• Title/Summary/Keyword: Air Injection

Search Result 1,199, Processing Time 0.029 seconds

Effect of Gasoline-premixing on Combustion and Exhaust Emissions Characteristics in Compression Ignition Engines (압축착화 엔진에서 가솔린 예혼합이 연소 및 배기 특성에 미치는 영향)

  • Cha, June-Pyo;Kwon, Seok-Joo;Heo, Jeong-Yun;Lee, Chang-Sik;Park, Sung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.53-57
    • /
    • 2010
  • The purpose of the present work is to investigate the effect of gasoline-premixing on a combustion and emissions characteristics in a compression ignition engine. For studying combustion characteristics, a combustion pressure and rate of heat release (ROHR) were measured using a single-cylinder DI compression ignition engine with a common-rail injection system and premixed fuel injection system. In addition, exhaust emissions characteristics were studied using emission analyzers and smoke meter. The experimental results showed that the case of gasoline-premixing had longer ignition delay and lower combustion pressure compared to the cases of diesel direct injection. Furthermore, premixed gasoline-air mixture reduced NOx emissions due to low peak of ROHR.

A Study on Characteristics of Knocking in Gasoline Engine through ECU Control (ECU 제어를 통한 가솔린 엔진의 노킹 특성에 관한 연구)

  • Yang, Hyun-Soo;Lim, Ju-Hun;Chun, Dong-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.109-115
    • /
    • 2008
  • A burning principle in gasoline engine is the one of being burned, by which a mixer in air and gasoline enters a combustion chamber and causes a spark in the proper timing. This is formed, by which ECU controls the fuel-injection volume and the fuel-injection timing, and determines the performance of engine. The purpose of this study is to test the characteristics on knocking in gasoline engine with the knocking-sensor equipment and to research into the characteristics in knocking while directly controling the optimal igniting timing and the fuel-injection timing through engine ECU. Given controlling ECU by grasping the characteristics in knocking, which becomes the most problem in the engine tuning market, the tuning in a true sense will be formed in gasoline engine.

Recent Topics on Injection and Combustion in High Speed Flow (Keynote)

  • Tomioka, Sadatake
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.3-8
    • /
    • 2009
  • Wall flush mounted injector with various orifice shape and injection conditions, were examined to enhance jet penetration and mixing in supersonic cross flow, in view of application to air-breathing accelerator vehicle. Orifice shapes with high aspect ratio were found to preferable for better penetration in the cold flow, and in the reacting flow for scramjet-mode combustion conditions. However, the effectiveness of the high aspect ratio was diminished in the dual-mode combustion conditions. Supersonic injection was applied to the high aspect ratio orifice, and further increase in penetration was observed in the cold and reactive flow for scramjet-mode combustion conditions, however, mixing enhancement due to mixing layer / pseudo-shock wave system interaction was dominant in the dual-mode combustion conditions. Difficulty in attaining ignition in the case with the high aspect ratio orifice was encountered during the combustion tests.

  • PDF

The Effect of Scavenging pressure on Performance Characteristics in Two-Stroke Diesel Engine (2행정 디젤기관의 소기압력이 성능특성에 미치는 영향)

  • Kim, Gi-Bok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.45-51
    • /
    • 2018
  • Compression ignition diesel engine can reduce carbon emission than gasoline engine in case of high efficiency, output and durability. So, compression ignition diesel engine is used in various fields such as automobiles, industries and so on. Due to reducing of emission exhaust by Developing of injection and combustion type of diesel engine, emission of pollution substance is developed compared the past. Moreover, its efficiency and reduce of carbon emission is better than gasoline engine and it is used in power source of industries, transports and others because of its high efficiency and durability nowadays. In this study, we experiment by making and designing of compression ignition diesel engine witch has air-cooling, 2 cylinder and 2 strokes.

Development of Electronic Control Fuel Injection and Spark Timing Controller for Automobile Engine (자동차 기관용 전자제어 연료분사 및 점화시기 제어기 개발)

  • Kim, T.H.;Min, G.S.;Yang, S.H.;Jang, H.S.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.22-35
    • /
    • 1995
  • In this paper, an electronic control unit is developed using 16bit microcomputer for automobile engine. This system incorporate AFS(Air Flow Sensor) of Hot Wire type, DIS(Direct Ignition System), ISC(Idle Speed Control) system, CAS(Cranke Angle Sensor) and other peripheral device. This system includes hardware and software to facilitate precision control of both fuel injection and ignition timing. Especially, this controller consists of position signal(180 teeth) and 4 REF signals. Present system has maximum $720^{\circ}CA$ delay. But this system has maximum $180^{\circ}CA$. Thus, this system is able to precision control both fuel injection and ignition timing.

  • PDF

A Study on the Numerical Analysis of Behavior of Spray Droplets and Internal Flow Field of Cylinder in Diesel Engine (디젤기관의 실린더내 유동 및 분무액적 거동의 수치적 연구(I))

  • 장영준;박호준;전충환;김진원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 1992
  • In this study, we calculated gas flow fields and distribution of fuel droplet and mass fraction using the CONCHAS-SPRAY code which modified to execute in IBM PC and changed three important factors, injection rate pattern (BASIC, I, II, III), different bowl shape and spray type. Especially vortices which be influenced by fuel-air mixing process, evaporation and flame propagation are generated more strongly in the bowl-piston type combustion chamber than in the flat-piston type. As the spray type changes, it is found that conical type produced large and strong vortices and fuel droplets are effictively diffused into the entire combustion chamber. As the injection rate pattern changes I, II, III based on BASIC type, we confirmed that End-of-Injection Effect strongly influence on droplets life time.

  • PDF

Experimental Study on Upstream Fueled Cavity Flame-Holder Scramjet Engine (상류 분사 공동 화염 지지부를 가지는 스크램제트 엔진에 관한 실험적 연구)

  • Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.;Jeong, Eun-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.197-204
    • /
    • 2006
  • The model cavity scramjet engine experiments are carried out using T3 free-piston shock tunnel. Upstream hydrogen fuel is injected before the cavity with different injection pressure. OH planar laser-induced fluorescence is used to investigate the combustion zone and piezoelectric pressure transducers are used to define the pressure rise due to the combustion. Main combustion region is a mixing layer which is between air and fuel. Also high OH fluorescence signal is appeared in the shear layer above the cavity in high equivalence ratio. From the OH signal in the cavity, this fuel injection system can be a role as a flame- holder.

  • PDF

Improvement of Moldability for Ultra Thin-Wall Molding with Micro-Patterns (마이크로 패턴을 가진 초박육 사출성형의 성형성 개선)

  • Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.556-561
    • /
    • 2007
  • The rapid thermal response(RTR) molding is a novel process developed to raise the temperature of mold surface rapidly in the injection stage and then cool rapidly to the ejection temperature by air or water. The objectives of this paper are to investigate the effect of mold temperature, pressure and thickness of micro pattern molding and to provide a optimization of RTR injection molding for micro pattern from Moldflow simulation. Optimal minimum temperature and pressure was found without shortcut according to thickness. Filling percentage was influenced by glass transition temperature with the kinds of resin. Optimal temperature is slightly higher than glass transition temperature irrespectively of pressure, thickness, the kinds of resin in the micro pattern molding.

Characteristics of Injection Molding in Optical Fiber Splice Closure (광섬유 케이블 접속함체의 사출성형 특성 분석)

  • Choi, Jaeyoung;Hong, Minsung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.434-439
    • /
    • 2016
  • Optical fiber splice closure serves to protect connection parts from external environment. Moreover, it functions as a connection, junction, and distribution in diverse surroundings such as aerial, underground, duct, and pole. In this research, first, the optical fiber splice closure, its configuration, and the design problem were briefly investigated. Second, the design and application for in-line cable closure were studied to satisfy its construction and technical features. The injection molding conditions and optimal design were conducted to save time and cost during the manufacturing process. Third, methods to minimize loss via of optical fiber cable while strongly fixing optical fiber cable with optical cable holder to prevent fracture were researched, and tests such as perfect air tightness and mechanical and environmental performance were conducted.

The Fundamental Study on Liquid Phase LPG Injection System for Heavy-Duty Engine (II) (대형엔진용 액상분사식 LPG 연료공급방식에 대한 기초연구 (2))

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.1-7
    • /
    • 2001
  • Recently, several LPG engines for heavy-duty vehicles have been developed, which can replace some diesel engines that are one of a main source for air pollution in urban area. As a preliminary study on the liquid phase LPG injection (hereafter LPLI) system applicable to a heavy duty LPG engine, the engine output and combustion performance were investigated with various combustion chambers and fuel compositions using a single cylinder engine equipped. Experimental results revealed that ellipse, double ellipse and nebula type combustion chamber made a more advantage in breaking swirl flow into small turbulence scale than bathtub type. Especially, performance of nebula type showed most highest efficiency and engine output under lean mixture conditions. An investigation fur various LPG fuel compositions was also carried out, and revealed that the case with 40% propane and 60% butane shows the lowest efficiency at stoichiometry, however, as the mixture became leaner its efficiency increased and became even higher for 100% propane case.

  • PDF