• 제목/요약/키워드: Air Ejector System

검색결과 67건 처리시간 0.03초

선박용 소각로 이젝터의 배출온도 변화에 따른 유동과 배기특성 (The Stream and Exhaust Gas Characteristics for Variation of Exhaust Gas Temperature of Marine Incinerator Ejector)

  • 김태한
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.60-64
    • /
    • 2000
  • An experimental study was performed to investigate the optimal ejector and operating condition of vessel incinerator. Exhaust gas temperature and secondary air which makes vacuum pressure at ejector throat regions were considered as an important factor. According to the measurement of pressure temperature and nitrogen oxides between non combustion and combustion we found the stream and exhaust gas characteristics of incinerator. This results can give us the exhaust gas temperature control system air pollutant reduction method and the optimum ejector design.

  • PDF

화학레이저 구동용 이젝터 시스템 개발 (III) - 고출력 화학레이저용 실물 크기의 이젝터 시스템 개발 및 성능 검증 - (Development of an Ejector System for Operating of Chemical Lasers (III) - Development and Performance Validation of a Full-Scale Ejector System for High Power Chemical Lasers -)

  • 김세훈;진정근;권세진
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.9-15
    • /
    • 2005
  • From the geometric parameter study, an optimal ejector design procedure of pressure recovery system for chemical lasers was acquired. For given primary flow reservoir conditions, an up-scaled ejector was designed and manufactured. In the performance test, secondary mass flow rate of 100g/s air was entrained satisfying the design secondary pressure, $40{\sim}50torr$. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of the diffuser at the secondary inlet further reduced diffuser upstream pressure to 7torr. Lastly, the duplicate of apparatus (air 500g/s secondary mass flow rate each) was built and connected in parallel to assess proportionality behavior on a system to handle larger mass flow rate. Test and comparison of the parallel unit demonstrated the secondary mass flow rate was proportional to the number of individual units that were brought together maintaining the lasing pressure.

증기-액 이젝터를 적용한 해양온도차발전 시스템의 성능 특성 (Performance Characteristics of OTEC(Ocean Thermal Energy Conversion) Power Cycle with Vapor-Liquid Ejector)

  • 윤정인;손창효;김현욱;하수정;이호생;김현주
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.88-93
    • /
    • 2014
  • In this paper, the performance analysis of condensation and evaporation capacity, turbine work and efficiency of the OTEC power system using vapor-liquid Ejector is presented to offer the basic design data for the operating parameters of the system. The working fluid used in this system is $CO_2$. The operating parameters considered in this study include the vapor quality at heat exchanger outlet, pressure ratio of ejector and inlet pressure of low turbine, mass flow ratio of separator at condenser outlet. The main results were summarized as follows. The efficiency of the OTEC power cycle has an enormous effect on the mass flow ratio of separator at condenser outlet. With a thorough grasp of these effects, it is possible to design the OTEC power cycle proposed in this study.

음속/초음속 이젝터 시스템의 2차정체실 압력특성 (The Secondary Chamber Pressure Characteristics of Sonic/Supersonic Ejector-Diffuser System)

  • 정성재;이준희;이권희;최보규;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.646-651
    • /
    • 2001
  • The present study is an experimental work of the sonic/supersonic air ejector-diffuser system. The pressure-time dependence in the secondary chamber of this ejector system is measured to investigate the steady operation of the ejector system. Six different primary nozzles of two sonic nozzles, two supersonic nozzles, petal nozzle, and lobed nozzle are employed to drive the ejector system at the conditions of different operating pressure ratios. Static pressures on the ejector-diffuser walls are to analyze the complicated flows occurring inside the system. The volume of the secondary chamber is changed to investigate the effect on the steady operation. the results obtained show that the volume of the secondary chamber does not affect the steady operation of the ejector-diffuser system but the time-dependent pressure in the secondary chamber is a strong function of the volume of the secondary chamber.

  • PDF

Experimental Study on the Performance of Refrigeration System with an Ejector

  • Lee, Won-Hee;Kim, Yoon-Jo;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권4호
    • /
    • pp.201-210
    • /
    • 2002
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were peformed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one of the evaporators) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flow rate ratio of suction fluid to motive fluid increases. The COP of dual-evapo-rator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

기체-액체 이젝터 유동의 가시화와 광섬유 탐침에 의한 기포분율 측정 (Visualization of Gas/liquid Ejector Flow and Void Fraction Measurement using Fiber Optic Probe)

  • 최성환;지호성;김경천
    • 한국가시화정보학회지
    • /
    • 제11권1호
    • /
    • pp.34-40
    • /
    • 2013
  • Gas/liquid two-phase ejector is a device without moving parts, in which liquid is used to drive gas of a low-pressure source. In this paper, the hydrodynamic characteristics of a vertical down type two-phase ejector were studied using an air-water loop system. Entrained air flow rates were measured with inlet and outlet pressures of the ejector with varying water flow rate. Homogeneous bubbly flows in the discharge pipe were confirmed by the high speed flow visualization method. Quantitative measurements of void fraction were made using a newly developed fiber optic probe system.

화학레이저 구동용 이젝터 시스템 개발 (I) - 화학레이저 구동용 초음속 이젝터 설계 변수 연구 - (Development of Ejector System for Chemical Lasers Operating (I) - Design Parameter Study of Supersonic Ejector for Chemical Lasers Operating -)

  • 김세훈;권세진
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1673-1680
    • /
    • 2003
  • It is essential to operate chemical lasers with supersonic ejector system as the laser output power goes up. In this research, ejector design parameter study was carried out for optimal ejector design through understanding the ejector characteristics and design requirements for chemical lasers operating. Designed ejector was 3D annular type with 2$^{nd}$ -throat geometry and pressurized air was used for primary flow. Ejector design was carried out with two steps, quasi-1D gas dynamics was used for first design and commercial code was used to verify the first design. In this study, to get the effect of ejector geometry on its performance, three cases of primary nozzle area ratio and 2$^{nd}$ -throat cross sectional area and two cases of 2$^{nd}$ -throat L/D ratio experiments were carried out. Primary and secondary pressures were measured to get the mass flow rate ratio, minimum secondary pressure, ejector starting pressure and unstarting pressure at every case. In the result, better performance than design level was shown and optimal ejector design method for chemical lasers was obtained.

수치해석을 이용한 담수장치용 이젝터의 노즐위치 변화에 따른 이젝터 유동특성 연구 (CFD Analysis on the Flow Characteristics of Ejector According to the Position Changes of Driving Nozzle for F.W.G)

  • 주홍진;정일영;윤상국;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.23-28
    • /
    • 2011
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube (throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. The multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Condition of the simulation was varied in entrance mass flow rate (1kg/s, 1.5kg/s, 2kg/s, 2.5kg/s, 3kg/s), and position of driving nozzle was located from the central axis of the suction at -10mm, 0mm, 10mm, 20mm, 30mm.. Asaresult, suction flow velocity has the highest value in central axis of the suction.

태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석 (Analysis of the ejector for low-pressure evaporative desalination system using solar energy)

  • 황인선;주홍진;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

밀폐용기내의 물의 저압 증발 최적조건에 관한 실험적 연구 (An Experimental Study on the Water Evaporation Conditions of the Enclosed Tank)

  • 김세현;신유식;이윤환;정한식;정효민
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.41-47
    • /
    • 2004
  • Cooling towers are widely used not only for cooling products and equipment in manufacturing process but HVAC(Heating, Ventilation and Air Conditioning) system. As a cooling tower is the terminal apparatus which discharges heat from industrial process, the efficiency of heat exchange in the cooling tower greatly affects to the overall performance of a thermal system. In this paper, we constituted a new water cooling system by using a Latent heat of evaporation in an enclosed tank, and this system is consisted of an enclosed vacuum tank and water driven ejector system. Several experimental cases were carried out for improvement methods of high vacuum pressure and water cooling characteristics. The ejector performance was tested in case of water temperature variations that flows into the ejector. Based on the vacuum pressure by water driven ejector, the water cooling characteristics were investigated for the vaporized air condensing effects.

  • PDF