• 제목/요약/키워드: Air Cooler

검색결과 223건 처리시간 0.024초

종이와 플라스틱 필름의 이종 재질로 구성된 직교류형 간접증발소자의 성능에 대한 실험적 연구 (An Experimental Study on the Performance of a Cross-Flow-Type, Indirect Evaporative Cooler Made of Paper/Plastic Film)

  • 권미혜;고민건;김내현
    • 설비공학논문집
    • /
    • 제27권9호
    • /
    • pp.475-483
    • /
    • 2015
  • In Korea, a typically hot and humid summer means that air-conditioners consume a large quantity of electricity; accordingly, the simultaneous usage of an indirect evaporative cooler may reduce the sensible-heat level and save the amount of electricity that is consumed. In this study, the heat-transfer and pressure-drop characteristics of an indirect evaporative cooler made of paper/plastic film were investigated under both dry and wet conditions; for the purpose of comparison, an indirect evaporative cooler made of plastic film was also tested. Our results show that the indirect evaporative efficiencies under a wet condition are greater than those under a dry condition, and the efficiencies of the paper/plastic sample (109% to 138%) are greater than those (67% to 89%) of the plastic sample; in addition, the wet-surface, indirect evaporative efficiencies of the paper/plastic sample are 32% to 36% greater than those of the plastic sample. Further, the wet-surface pressure drops of the paper/plastic sample are 13% to 23% larger than those of the plastic sample, and this might have been caused by the surface roughness of the samples. A rigorous heat-transfer analysis revealed that, for the plastic sample, 30% to 37% of the wet channels remained dry, whereas all of the channels were wet for the paper/plastic sample.

물/PG-기반 $Al_2O_3$ 나노유체를 적용한 수냉식 CPU 쿨러의 냉각성능 (Cooling Performance of Liquid CPU Cooler using Water/PG-based $Al_2O_3$ Nanofluids)

  • 박용준;김규한;이승현;장석필
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2014
  • In this study, the cooling performance of a liquid CPU cooler using the water/propylene glycol(PG)-based $Al_2O_3$ nanofluids is experimentally investigated. Water/PG-based $Al_2O_3$ nanofluids are manufactured by two-step method with ultrasonic energy for 10 hours. The volume fractions of the nanofluids are 0.25% and 0.35%. Thermal conductivity and viscosity of the nanofluids are measured to theoretically predict the thermal performance of the liquid CPU cooler using performance factor. Performance factor results indicate that the cooling performance of the liquid CPU cooler can be improved using the manufactured nanofluids. To evaluate the cooling performance of the liquid CPU cooler experimentally, temperature differences between ambient air and heater are measured for base fluid and nanofluids respectively. Based on the results, it is shown that performance of the liquid CPU cooler using $Al_2O_3$ nanofluids is improved maximum up to 8.6% at 0.25 Vol.%.

채널이 수막으로 완전히 덮여 있는 증발식 냉각기에서의 열 및 물질전달 해석 (Analysis of Heat and Mass Transfer in an Evaporative Cooler with Fully Wetted Channel)

  • 송찬호;이대영;노승탁
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1766-1775
    • /
    • 2001
  • A theoretical analysis on the heat and mass transfer in an evaporative cooler is presented in this work. The evaporative cooler is modeled as a channel filled with porous media the interstitial surface of which is covered by thin water film. Assuming that the Lewis number is unity and the water vapor saturation curve is linear, exact solutions to the energy and vapor concentration equations are obtained. Based on the exact solutions, the characteristics of the heat and mass transfer in the evaporative cooler are investigated. The comparison of the cooling performance between the evaporative cooler and the usual sensible heat exchanger is also carried out. Obviously, the evaporative heat exchanger shows better cooling performance than the sensible heat exchanger. This is due to the latent heat of water vaporization, which results in apparent increases both in the interstitial heat transfer coefficient and the specific heat of the air stream in the evaporative cooler.

플라스틱/종이 재질의 간접 증발 소자와 재생 증발 소자 성능 비교 (Performance Comparison between Indirect Evaporative Cooler and Regenerative Evaporative Cooler made of Plastic/Paper)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.88-98
    • /
    • 2016
  • 여름철이 무더운 대한민국에서는 냉방에 많은 전력을 소비한다. 이 경우 간접증발냉각을 동시에 적용하면 전기 사용을 줄일 수 있다. 본 연구에서는 물 퍼짐성을 개선한 플라스틱/종이 재질의 간접 및 재생증발소자에 대해 일련의 실험을 수행하였다. ${\epsilon}-NTU$ 방식의 열 및 물질전달 해석 모델과 비교한 결과 모델의 예측치는 간접 및 재생증발소자의 간접증발효율, 냉각열량, 압력손실을 적절히 예측하였다. 모델 해석 결과 간접 및 재생증발소자 모두 건채널 입구온도와 상대습도가 증가하면 간접증발효율이 증가하였다. 또한 재생증발소자의 간접증발효율이 간접증발소자의 값보다 크게 나타났다.

이산화탄소를 이용한 온수급탕용 초월임계사이클의 성능에 대한 실험적 연구 (Experimental Studies on the Performance of a Transcritical Cycle for Hot Water Heating Using Carbon Dioxide)

  • 김성구;김민수
    • 설비공학논문집
    • /
    • 제15권6호
    • /
    • pp.461-470
    • /
    • 2003
  • The purpose of this study is to investigate the performance of a transcritical cycle for hot water heating using $CO_2$ as a working fluid. Some of the main parameters that affect the practical performance of the $CO_2$ system are discussed; the performance on the variation of refrigerant charge, changes in flow conditions of secondary fluids, and that with or without internal heat exchanger, The experimental results show that the optimum charge is approximately the same for various mass flow rates of the secondary fluid at gas cooler. The experimental results on the effect of secondary fluids are in general agreement with the experimental results of transcritical cycle in the open literature and show similar trend for conventional subcritical vapor compression cycles. The heat exchanger effectiveness increases with an increase of the heat exchange area of the internal heat exchanger regardless of the mass flow rate at the gas cooler.

Design of Solar Cell Cooling System Using Convection Phenomena

  • Lee, Jae-hyuk
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.123-128
    • /
    • 2020
  • We constructed a cooling system for solar cells using convection phenomena and investigated its cooling performance. The cooling system didn't need any driving power or water resources. The convection cooler manufactured with a right-triangle shape of an air duct was attached to the rear of the solar cell to confirm that cooling was performed using convection phenomena. When the ratio of duct width to attachment surface width was 3:7, and the ratio of entrance height and exit height of duct was 5:1, it showed the best cooling performance. Comparative experiments with solar cells without convection cooler showed that cooling effects from 16.5℃ to 20.9℃ occurred after 40 minutes exposed to the 1300W Xenon lamp condition.

흡습 냉각 원리를 이용한 소형 냉각 패드에 관한 연구 (Conceptual Development of a Subminiature Cool Pad Applying Sorption Cooling Effect)

  • 황용신;이대영;김우승
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.121-127
    • /
    • 2004
  • This paper describes conceptual development and idea-verification of a sub-miniature portable cooler which dose not necessitate any pre-cooling nor any external energy supply. The basic principle of the cooling mechanism is the vaporization of water and sub-sequent cooling due to the evaporative latent heat loss. In this work, the vaporization of the water is stimulated by desiccant material to improve the cooling effect. The evaporative cooling caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. In addition, the portable cooler is fabricated in the shape of a thin pad, and its cooling characteristics are tested and compared with the analytic results.

PI Controller Design of the Refrigeration System Based on Dynamic Characteristic of the Second Order Model

  • Jung, Young-Mi;Jeong, Seok-Kwon;Yang, Joo-Ho
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.200-206
    • /
    • 2014
  • This paper deals with deterministic PI controller design based on dynamic characteristics for refrigeration system. The temperature control system of an oil cooler is described as a typical 2nd order model of the refrigeration system which has zeros in a transfer function. PI controller gains satisfying control specifications are represented by the dynamic characteristic functions using relationship between the parameters and the control specifications in the model. Phase margin was considered to increase robustness of the oil cooler control system. Furthermore, the influence of zeros in the model to the control specifications was analyzed in detail for improving control performance. The validity of the suggested PI controller design was investigated using the four types of gains which had been already confirmed their control performances through experiments.

자동차용 이산화탄소 냉방 시스템의 정상상태 및 동적 특성에 관한 연구 (Studies on the Steady State and Dynamic Characteristics of a Carbon Dioxide Air-Conditioning System for Vehicles)

  • 박민수;김성철;김달원;김민수
    • 대한기계학회논문집B
    • /
    • 제31권6호
    • /
    • pp.531-538
    • /
    • 2007
  • In this study, an air conditioning system using carbon dioxide as a refrigerant was developed for automotive cabin cooling. Experiments have been carried out to examine the steady state and dynamic characteristics of this system. The system consists of a compressor, a gas cooler, an evaporator, an expansion device, an internal heat exchanger and an accumulator. The compressor is a variable displacement type, driven by the electric motor, and the gas cooler and the evaporator are aluminum extruded heat exchangers of micro channel type. The $CO_2-refrigerant$ charge, the compressor speed, the air inlet temperature of the gas cooler, the air inlet temperature and the air flow rate of the evaporator and the cooling load are varied and the performance of the system is experimentally investigated. As the compressor speed increased, cooling capacity increased, but the coefficient of performance was deteriorated. As the cabin air temperature or the air flow rate to the cabin was set high, both the cooling capacity and the COP increased. In the cool down experiment with 1.0 or 2.0 kW of heat load, the dynamic characteristics of the air-conditioning system were investigated. For a given capacity of compressor, cool down speed was monitored, and the temperature change was acceptable fur low heat load condition.