• Title/Summary/Keyword: Air Conditioners

Search Result 227, Processing Time 0.025 seconds

Studies on the Evaporative Heat Transfer Characteristics and Pressure Drop of CO2 Flowing Upward in Inclined (45°) Smooth and Micro-fin Tubes (경사평활관 및 마이크로핀관에서의 이산화탄소의 증발열전달 특성과 압력강하에 관한 실험적 연구)

  • Kim, Yong-Jin;Cho, Jin-Min;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.612-620
    • /
    • 2008
  • New alternative refrigerants have been developed due to the ozone layer depletion and global warming. For this reason, carbon dioxide is believed to be a promising refrigerant for use in air conditioners and heat pumps. Evaporative heat transfer characteristics and pressure drop of $CO_2$ with outer diameter of 5 mm in inclined ($45^{\circ}$) smooth and micro-fin tubes have been investigated by the experiments with respect to several test conditions such as mass fluxes, heat fluxes, evaporation temperatures in this study. The inclined ($45^{\circ}$) smooth and micro-fin tubes with length of 1.44 m were installed to measure the evaporative heat transfer coefficients of $CO_2$ and heat was supplied to the refrigerant by direct heating method where the test tube was uniformly heated by electricity. The tests were conducted at mass fluxes from 212 to $656\;kg/m^2s$, heat fluxes from 15 to $60\;kW/m^2$ and evaporation temperatures from -10 to $20^{\circ}C$. The heat transfer coefficients of $CO_2$ are slightly increased with increasing mass flux, and the heat transfer characteristics in the inclined ($45^{\circ}$) tubes are enhanced about $5{\sim}10%$ compared with those in horizontal or vertical tubes.

A Survey on the Electric Power Consumptions of Apartments located at Coastal Area : Yeongdo-gu, Busan, Korea (연안지역 아파트의 전력소비량 실태조사 - 부산광역시 영도구에 대한 사례연구 -)

  • Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.241-245
    • /
    • 2009
  • Because of the heat island phenomenon and sea wind, there can be thermal conditions' differences around buildings at downtown and coastal area respectively in coastal city, like Busan, Incheon, Mokpo. For the final purpose of the buildings' energy saving design and operation considering of above mentioned environments differences, energy consumption including heating and cooling loads, electric loads are necessary to be accumulated and analyzed in as the database. As a part of this concept, this study aims to survey and analyze each loads of 22 apartments which has at least 100 households respectively and is located at Yeongdo island, Busan, Korea It is cleared that despite the residents living in this district can use sea wind as a natural ventilation and/or cooling methods, they mainly depends on the electric-driven air-conditioners for cooling with window-closed because of anti-salt problems of the sea wind. This leads the maximum power consumption of the surveyed-22-apartments to be appeared in August like that of inland buildings.

Speed Controller Transition Method for I-F Operation and Sensorless Operation of Permanent Magnet Synchronous Motor (영구자석 동기 전동기의 I-F 구동과 센서리스 구동을 위한 속도 제어 절환 기법)

  • Kim, Dong-Uk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.543-551
    • /
    • 2019
  • Permanent Magnet Synchronous Motors(PMSMs) have a wider range of applications due to their high output density and high efficiency. PMSMs are used not only in high-power density, high-performance motor-driven systems such as vehicle and robots, but also in systems where cost-cutting is very important, such as washing machines, air conditioners and refrigerators. To reduce costs, position sensorless control is required, which is generally difficult to be used under conditions of starting the motor. Thus, the I-F speed control that rotates the current vector at any speed in the starting procedure should be used at first, and then the sensorless speed control could be applied after PMSM rotates above a certain speed. Speed control performance in I-F speed control and sensorless speed control is very important. And more speed control performance should be maintained even in the transient in which the two control techniques are changed. In this paper, the speed controller transition method from I-F speed control to sensorless speed control of permanent magnet synchronous motor is proposed. Experiments were carried out on the washing machine drive system to verify the performance of the proposed technique.

Evaporation Heat Transfer and Pressure Drop of R-410A in a 7.0 mm O.D. Microfin Tube at Low Flow Rates (낮은 유량에서 외경 7.0 mm 마이크로핀 튜브 내 R-410A 증발 열전달 및 압력 손실)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.761-772
    • /
    • 2015
  • Microfin tubes having an outside diameter (O.D.) of 7.0 mm are widely used in residential air conditioning systems and heat pumps. It is known that the mass fluxes for air conditioners and heat pumps under partial load conditions are several tens of $kg/m^2s$. However, literature surveys reveal that previous investigations were limited to mass flux over $100kg/m^2s$. In this study, we conduct R-410A evaporation heat-transfer tests at low mass fluxes ($50-250kg/m^2s$) using a 7.0 mm O.D. microfin tube. During the test, the saturation temperature was maintained at $8^{\circ}C$, and the heat flux was maintained at $4.0kW/m^2$. For comparison purposes, we also test a smooth tube with a 7.0 mm O.D. The results showed that the heat-transfer enhancement factor of the microfin tube increased as the mass flux decreased up to $150kg/m^2s$, which decreased as the mass flux further decreased. The reason for this was attributed to the change of the flow pattern from an annular flow to a stratified flow. Within the test range, the frictional pressure drops of the microfin tube were approximately the same as those of the smooth tube. We then compare experimental data obtained with the predictions obtained for the existing correlations.

Study of Formation Factor of Biofilm on Aluminum surface and Removal Efficiency of Biofilm by Antimicrobials (알루미늄 표면에 생물막의 형성인자 및 항균제에 의한 생물막 제거효과 분석)

  • Park, SangJun;Oh, YoungHwan;Jo, BoYeon;Lee, JaeShin;Lee, SangWha;Jeong, JaeHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.730-739
    • /
    • 2015
  • 108 microorganism types (79 types of fungi and 29 types of bacteria) were isolated from 25 automobiles generating bad odor when the air conditioner was turned on, and 43 types of fungi and 23 types of bacteria were identified. The analysis of condensate generated by the air conditioners in the automobiles indicated pH 6.4~7.1, 12.5~34.2 mg/L carbon source, 0.9~18.6 mg/L nitrogen source, 0.5~27.8 mg/L ion contents, and 0.1~7.7 mg/L mineral contents. The biofilms were formed by the mesophiles under the summer temperature/humidity condition ($26^{\circ}C$, 70% R.H.), and they were regenerated when the environmental factors (nutritional contents and temperature/humidity) were appropriate even after they were artificially removed. Although the antimicrobials removed 99.9% of planktonic cells within 15 minutes, they were not effective in removing biofilm. Up to 1,950 ppmv of ethanol was observed in the automobile treated with the antimicrobials. Although the figure is lower than the acute toxicity level when inhaled by humans, the health safety of the chemical substances used in the antimicrobials needs to be reviewed.

Implementation of A Monitoring System using Image Data and Environment Data (영상정보와 환경정보를 이용한 실내 공간 모니터링 시스템 구현)

  • Cha, Kyung-Ae;Kwon, Cha-Uk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The objective of this study is to design a system that automatically monitors the state of interior spaces like offices where lots of people are coming and going through image data and environment data, which includes temperature, humidity, and other conditions, and implement and test related application programs. In practice, there are lots of image data automatically obtained by unmanned equipments, such as certain types of CCTVs, for monitoring situation in usual interior spaces. This image data can be used as a more effective manner by establishing a system that recognizes situation in specific interior spaces based on the relationship between image and environment data. For instance, it is possible to perform unmanned on/off controls for various electronic equipments, such as air conditioners, lights, and other devices, through analyzing the data acquisited from environment sensors (temperature, humidity, and illumination) as dynamic states are not maintained for a specified period of time. For implementing these controls, this study analyzes environment data acquisited from temperature and humidity sensors and image data input from wireless cameras to recognize situation and that can be used to automatically control environment variables configured by users. Experiments were applied in a laboratory where unmanned controls were effectively performed as automatic on/off controls for the air conditioner and lights installed in the laboratory as certain motions were detected or undetected for a specified period of time.

Effects of Soil Aggregate Stability and Wettability on Infiltration and Evaporation (토양입단(土壤粒團)의 안정성(安定性)과 친수성(親水性)이 수분침투(水分浸透) 및 증발(蒸發)에 미치는 영향(影響))

  • Jo, In-Sang;Cho, Seong-Jin;Verplanke, H.;Hartmann, R.;De Boodt, M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.121-127
    • /
    • 1985
  • This study was designed to gain practical data on the use of soil conditioners for more efficient water managements and to establish the optimum levels of structural properties for soil conditioning. A sandy loam and a silt loam soil were each treated with two different soil conditioners, hydrophobic Bitumen or hydrophilic Uresol. The perspex tube 34 cm long were packed homogeneously with air dried soil up to 2 cm below the top, then covered over 2 cm of treated or untreated aggregates. The infiltration rate into the soil columns was measured under simulated rainfall condition. The evaporation study was carried out in the wind tunnel, and the changes of soil moisture distribution of the columns following and during the evaporation were determined by a gamma ray scanner. The infiltration rate of water into the soil column was increased to 18.7-50.8% by the Uresol treatment but it was decreased to less than 25% of control by the Bitumen treatment. Evaporation was decreased to 22.0-68.1% by the Bitumen treatment and to 38.7-68.4% by the Uresol treatment. The water use efficiency of Uresol treated column was increased to more than twice as much as that of untreated soil. Aggregate stability and wetting angle were related to water infiltration and evaporation. A positive and highly significant logarismic relationship was found between the infiltration rate and stability index-wetting angle, evaporation rate and instability index-wetting angle. It was considered that the structural stability is more important than wetting angle. This is true because the structural stability is always positively correlated to water saving, however wettability is positively correlated to the infiltration, and negatively correlated to water saving during the evaporation.

  • PDF

Performance Comparison between Indirect Evaporative Coolers made of Aluminum, Plastic or Plastic/Paper (알루미늄, 플라스틱, 플라스틱/종이 재질의 간접 증발 소자 성능 비교)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8165-8175
    • /
    • 2015
  • In Korea, summer is hot and humid, and air-conditioners consume lots of electricity. In such case, simultaneous usage of indirect evaporative cooler may reduce the sensible heat and save the electricity. In this study, heat transfer and pressure drop characteristics of indirect evaporative cooler made of aluminum, plastic, plastic/paper are investigated both under dry or wet condition. Results show that indirect evaporation efficiencies of the plastic/paper sample (38.5% ~ 51.4%) are approximately the same as those of the aluminum sample (41.9% ~ 47.5%), and are larger than those of the plastic sample (29.0% ~ 37.4%). This suggests that the plastic/paper sample could be a good substitute to the aluminum sample. However, the pressure drops across the paper channel are 92% ~ 106% larger than those across the aluminum channel. The heat transfer coefficients of the paper channel under dry condition are 15% ~ 44% larger than those of the plastic channel. The increases are 185% ~ 203% for the aluminum channel. The pressure drops of the paper channel are 34% ~ 48% larger than those of the plastic channel and 93% ~ 106% larger than those of the aluminum channel. Rigorous heat transfer analysis reveals that, for the plastic sample, 30% ~ 37% of the wet channels remain dry, whereas all the channels are wet for plastic/paper sample. For aluminum sample, the ratio is 17% ~ 23%.

Design and Implementation of a Power-Saving Management System using Intelligent Scheduler based on RFID/USN Technology (RFID/USN 기술 기반의 지능형 스케줄러를 이용한 절전관리 시스템 설계 및 구현)

  • Jeong, Kyu-Seuck;Choi, Sung-Chul;Jeong, Woo-Jeong;Kim, Tae-Ho;Kim, Jong-Heon;Seo, Dong-Min;Park, Yong-Hun;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.64-76
    • /
    • 2009
  • Recently, the ubiquitous environment and the practical technology associated with it become more popular topic along with the rapid development of wireless technologies. The necessity of the automated system based on the ubiquitous environment has been increasing when the concept of the ubiquitous is integrated into the fields of existing IT. Also, the necessity of formulating a power-saving plan on large buildings and public institutions is gathering strength because of a raise in exchange rates and high oil prices. In this paper, to efficiently manage the power consumption of the electronic machine such as electric lights, electric heaters, and air conditioners in a building, power-saving manage- ment system using RFID/USN technologies is proposed. Proposed system controls the electric machine and monitor it's condition by RFID and collects the real time information about the surrounding and the power consumption of the electric machine by USN. Especially, proposed system analyzes the real time information and supports the intelligent scheduler with the best power-saving. Finally, this paper shows the difference between proposed system and existing system and establishes thereality of our system through experiments in variety environments.

Evaporation Heat Transfer and Pressure Drop of R-404A at Low Flow Rates in 9.5 mm O.D. Smooth and Microfin Tubes (낮은 유량에서 외경 9.5 mm 평활관과 마이크로핀관 내 R-404A 증발 열전달 및 압력 손실)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.27-36
    • /
    • 2018
  • A significant amount of studies were performed on evaporation heat transfer and pressure drop in microfin tubes. Most studies, however, focused on the refrigerants used in air-conditioners or heat pumps, and very limited information is available on R-404A, which is used in low temperature refrigeration. In this study, the evaporation heat transfer and pressure drop characteristics of R-404A in a 9.5 mm O.D. microfin tube were investigated for the mass flux range from $80kg/m^2s$ and $200kg/m^2s$. A smooth tube of the same outer dimeter was also tested for comparison. The results showed that the heat transfer enhancement ratio of the microfin tube increased with increasing mass flux and the heat flux decreased. The relative contribution of the convective heat transfer and the heat flux on total heat transfer was attributed to the observed trend. The pressure drops of the microfin tube were slightly (maximum 28%) larger than those of the smooth tube. Existing correlations do not adequately predict the measured heat transfer coefficients of pressure drops, probably due to the test range of the present study, which is outside of the existing correlations.