• Title/Summary/Keyword: Air Chemistry

Search Result 986, Processing Time 0.028 seconds

Observation of Water Consumption in Zn-air Secondary Batteries

  • Yang, Soyoung;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.381-386
    • /
    • 2019
  • Zn-air battery uses oxygen from the air, and hence, air holes in it are kept open for cell operation. Therefore, loss of water by evaporation through the holes is inevitable. When the water is depleted, the battery ceases to operate. There are two water consumption routes in Zn-air batteries, namely, active path (electrolysis) and passive path (evaporation and corrosion). Water loss by the active path (electrolysis) is much faster than that by the passive path during the early stage of the cycles. The mass change by the active path slows after 10 h. In contrast, the passive path is largely constant, becoming the main mass loss path after 10 h. The active path contributes to two-thirds of the electrolyte consumption in 24 h of cell operation in 4.0 M KOH. Although water is an important component for the cell, water vapor does not influence the cell operation unless the water is nearly depleted. However, high oxygen concentration favors the discharge reaction at the cathode.

Puffability with Hulling steps and Rice Varieties by Hot Air Puffer (벼품종과 도정단계에 따른 열풍 팽화 특성)

  • Kim, Joong-Man;Kim, Dong-Han;Baek, Seung-Hwa;Choi, Yong-Bae;Han, Sung-Hee
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.72-76
    • /
    • 1994
  • Effects of rice type (unhulledy, brown, and polished rice), varieties, moisture content, and shape (length and diameter), on rice of puffability by hot air were investigated. The puffability of unhulled rice was the highest among them. In addition, relative crystallinities of puffed paddy by hot air puffer ($55{\pm}5\;sec.$, at $210{\pm}5^{\circ}C$) were lower than those of brown and polished rice. The puffability of Wongbongolchalbyeo, glutinous rice, and Jinjubyeo, non-glutinous rice, was good, respectively. Optimum moisture content of unhulled rice for maximum puffed volume was in the range of $10{\sim}12%$ (w/w).

  • PDF

Components in Zn Air Secondary Batteries (Zinc Air 이차전지의 구성요소)

  • Lee, Junghye;Kim, Ketack
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • Components of zinc-air battery and their problems are explained. Energy density of zinc air battery is superior to other commercial ones including Li-ion batteries. Cycle life of the zinc air batteries is poor because of irreversible redox reactions on both electrodes. In order to improve the performance of the zinc air battery, catalysts, passivation, and the new structure of electrodes should be developed to optimize several reactions in an electrode. Multidisciplinary efforts, such as mechanics, corrosion science, composite materials are necessary from the beginning of the research to obtain a meaningful product.

Washout Removal Efficiencies of Major Air Pollutants by Precipitation

  • Kim, Dong-Sool;Lim, Deuk-Yong;Heo, Jeong-Sook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.97-106
    • /
    • 2002
  • The purpose of this study was to quantitatively estimate the washout removal efficiencies of criteria air pollutants such as SO$_2$, TSP, PM10, CO, NO$_2$, and O$_3$corresponding to the amounts and durations of precipitation. The removal patters by washout were studied with air pollutants data and the corresponding precipitation data in Seoul, Korea during the periods of 1990 to 1999. In addition, washout patterns were classified into four seasons and four time Bones, i.e., night, morning, afternoon, and evening. In this study, natures of air pollutants by sequential precipitation were also intensively studied by examining the linear relationships between removal efficiencies and the amounts and durations of precipitation for each pollutant. The results of this study showed that SO$_2$, TSP, and O$_3$were rapidly removed by initial precipitation; however, NO$_2$was slowly removed 2-hour after precipitation. Both CO and PM10 were weakly removed by washout and their removal patters showed to be irregular.

Analysis of Volatile Fatty Acids in Air by Dynamic SPME (Dynamic SPME를 이용한 공기 중 지방산 분석)

  • Yu, Mee-Seon;Yang, Sung-Bong;Ha, Nam-Ki
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1447-1454
    • /
    • 2010
  • In this study, the detection limits of lower fatty acids in air were investigated by using Dynamic SPME(Solid Phase Micro-Extraction), i.e. improved Head Space - SPME method(HS-SPME). This Dynamic SPME, called SPDE(Solid Phase Dynamic Extraction), is the analytical method for volatile compounds in air with the extraction by using a stainless steel needle of which inner surface is coated with adsorption material and following the gas chromatographic analysis by inserting the needle into a injection port of GC and subsequently, desorption of the volatile compounds into a gas-chromatographic column. Extraction was carried out by passing the sample air through the needle with a suction pump which has been used for a detection tube. The result of measurement for the 6 lower fatty acids showed that the detection limits ranged from 0.10 ppm to 0.44 ppm and the linear correlation coefficients were over 0.99. Relative standard deviations obtained from 5 analytical repetition of a ca. 1.6 ppm standard mixture were in the range of 1.87%~2.47%. This method has been shown to be a adequate for the measuring C2~C5 fatty acids in air in the concentrations of over several hundreds ppb.