DOI QR코드

DOI QR Code

Components in Zn Air Secondary Batteries

Zinc Air 이차전지의 구성요소

  • Lee, Junghye (Department of Chemistry, Sangmyung University) ;
  • Kim, Ketack (Department of Chemistry, Sangmyung University)
  • Received : 2013.01.25
  • Accepted : 2013.02.25
  • Published : 2013.02.28

Abstract

Components of zinc-air battery and their problems are explained. Energy density of zinc air battery is superior to other commercial ones including Li-ion batteries. Cycle life of the zinc air batteries is poor because of irreversible redox reactions on both electrodes. In order to improve the performance of the zinc air battery, catalysts, passivation, and the new structure of electrodes should be developed to optimize several reactions in an electrode. Multidisciplinary efforts, such as mechanics, corrosion science, composite materials are necessary from the beginning of the research to obtain a meaningful product.

Zinc air 전지의 구성요소와 전지의 특징을 설명하였다. 리튬 이온 전지에 비해 월등히 높은 에너지 밀도를 가지고 있지만, 충전의 비가역성으로 인한 낮은 용량 유지 특성 때문에 zinc air 이차전지는 아직 상용화되지 못하였다. Zinc air 전지는 충방전에 관여하는 반응들의 속도가 느려서 그 반응들의 속도를 촉진해야 하는 특징이 있는가 하면 동시에 부식과 수소발생 반응의 속도는 오히려 느리게 해야 하는 까다로운 조건을 만족해야 한다. 기존의 전지들과 비교하면, 기초연구뿐 아니라, 전지의 기계적구조, 부식, 복합소재적인 요소의 적용이 더욱 필요한 연구분야라고 하겠다. 출력개선과 부식방지 그리고 공기의 공급에 대비한 물의 증발의 억제 등은 상충하는 성질을 동시에 만족해야 하는 복합소재의 특성이다.

Keywords

References

  1. http://www.energizer.com.
  2. P. Sapkota and H. Kim, 'Zinc-air fuel cell, a potential candidate for alternative energy', J. Ind. Eng. Chem., 15, 445-450 (2009). https://doi.org/10.1016/j.jiec.2009.01.002
  3. D. Linden and T. B. Reddy, 'Handbook of Batteries 3th', McGraw-Hill Companies, Inc., 1454 (2001).
  4. V. Neburchilov, H. Wang, J. J. Martin, and W. Qu, 'A review on air cathodes for zinc-air fuel cells', J. Power Sources, 195, 1271-1291 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.100
  5. G. W. Heise, 'Air depolarized primary battery', No. 49404 (1925).
  6. C. Chakkarabarthy, A. K. Abdul Waheed, and H. V. K. Udupa, 'Zinc air alkaline battery-a review', J. Power Sources, 6, 203-228 (1981). https://doi.org/10.1016/0378-7753(81)80027-4
  7. K. R. Blurton and A. F. Sammells, 'Metal/air battery: Their status and potential-a riveiw', J. Power Sources, 4, 263-279 (1979). https://doi.org/10.1016/0378-7753(79)80001-4
  8. http://www.powerone-batteries.com.
  9. http://www.durecell.com.
  10. http://www.button-battery.com.
  11. B. H. Ryou, US 2009/0142667 A1 (2009).
  12. http://www.energizer.com, 'Zinc air prismatic handbook'
  13. J. Goldstein, I. Brown and B. Koretz, 'New developments in the Electric Fuel Ltd. zinc/air system', J. Power Sources, 80, 171-179 (1999). https://doi.org/10.1016/S0378-7753(98)00260-2
  14. http://www.electric-fuel.com.
  15. Http://www.powerzinc.com.
  16. S. Stuart I. and Z. X. Gregory, 'A regenerative zinc-air fuel cell', J. Power Sources, 165, 897-904 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.076
  17. C. Song and J. Zhang, 'Electrocatalytic Oxygen Reduction Reaction', Springer, 89-129 (2008).
  18. Z. Chen, J. Y. Choi, H. Wang, H. Li, and Z. Chen, 'Highly durable and active non-precious air cathode catalyst for zinc air battery', J. Power Sources, 196, 3673-3677 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.047
  19. S. W. Eom, C. W. Lee, M. S. Yun, and Y. K. Sun, 'The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes', Electrochim. Acta, 52, 1592-1595 (2006). https://doi.org/10.1016/j.electacta.2006.02.067
  20. J. Huot and E. Boubour, 'Electrochemical performance of gelled zinc alloy powders in alkaline solutions', J. Power Sources, 65, 81-85 (1997). https://doi.org/10.1016/S0378-7753(96)02613-4
  21. C. W. Lee, K. Sathiyanarayanan, S. W. Eom, and M. S. Yun, 'Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery', J. Power Sources, 160, 1436-1441 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.019
  22. H. Yang, Y. Cao, X. Ai. and L. Xiao, 'Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives', J. Power Sources, 128, 97-101 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.050
  23. C. H. Tzipi, Z. Yuli, and E. E. Yair, 'In situ STM studies of zinc in aqueous solutions containing PEG DiAcid inhibitor: Correlation with electrochemical performances of zinc-air fuel cells', J. Power Sources, 157, 584-591 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.090
  24. J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, and J. Cho, 'Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air', Adv. Energy Mater., 1, 34-50 (2011). https://doi.org/10.1002/aenm.201000010
  25. E. Deiss, F. Holzer, and O. Haas, 'Modeling of an electrically rechargeable alkaline Zn-air battery', Electrochim. Acta, 47, 3995-4010 (2002). https://doi.org/10.1016/S0013-4686(02)00316-X
  26. G. Q. Zhang and X. G. Zhang, 'MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells', Electrochim. Acta, 49, 873-877 (2004). https://doi.org/10.1016/j.electacta.2003.09.039
  27. T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, and M. Srinivasan, 'Silver nanoparticledecorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries', J. Power Sources, 195, 4350-4355 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.137
  28. S. Zhu, Z. Chen, B. Li, H. Drew, H. Wang, H. Li, and Z. Chen, 'Nitrogen-doped carbon nanotubes as air cathode catalysts in zinc-air battery', Electrochim. Acta, 56, 5080-5084 (2011). https://doi.org/10.1016/j.electacta.2011.03.082
  29. Z. Adrianna and J.-N. Martin, 'Efficient air-breathing biocathodes for zinc/oxygen batteries', J. Power Sources, 228, 104-111 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.081
  30. Y. Zhao, K. Watanabe, and K. Hashimoto, 'Poly(bis-2,6-diaminopyridinesulfoxide) as an active and stable electrocatalyst for oxygen reduction reaction', J. Mater. Chem., 22, 12263 (2012). https://doi.org/10.1039/c2jm30991b
  31. X. Li, A. L. Zhu, W. Qu, H. Wang , R. Hui, L. Zhang, and J. Zhang, 'Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries', Electrochim. Acta, 55, 5891-5898 (2010). https://doi.org/10.1016/j.electacta.2010.05.041
  32. P. Sapkota and H. Kim, 'An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators', J. Ind. Eng. Chem., 16, 39-44 (2010). https://doi.org/10.1016/j.jiec.2010.01.024
  33. H. Zhang, J. Xiao, Z. Yang, H. Wang, G. Ma, and Z. Zhou, 'Ionic conduction in Zn 2+-doped ZrP 2O 7 ceramics at intermediate temperatures', Solid State Ionics, 218, 1-6 (2012). https://doi.org/10.1016/j.ssi.2012.04.001
  34. J. Tulloch and S. W. Donne, 'Activity of perovskite La1xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes', J. Power Sources, 188, 359-366 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.024
  35. S.-W. Eom, S.-Y. Ahn, I.-J. Kim, Y.-K. Sun, and H.-S. Kim, 'Electrochemical evaluation of La1- x Ca x CoO3 cathode material for zinc air batteries application', J. Electroceram., 23, 382-386 (2009). https://doi.org/10.1007/s10832-008-9472-8
  36. X. Li, W. Qu, J. Zhang, and H. Wang, 'Electrocatalytic Activities of La0.6Ca0.4CoO3 and La0.6Ca0.4CoO3-Carbon Composites Toward the Oxygen Reduction Reaction in Concentrated Alkaline Electrolytes', J. Electrochem. Soc., 158, A597 (2011). https://doi.org/10.1149/1.3560170
  37. J. Dobryszychi and S. Biallozor, 'On some organic inhibitors of zinc corrosion in alkaline media', Corros. Sci., 43, 1309-1319 (2001). https://doi.org/10.1016/S0010-938X(00)00155-4
  38. M. Pourbaix, 'Atlas of Electrochemical Equlibria in Aqueous Solutions', National Association of Corrosion Engineers (1974).
  39. Y. D. Cho and G. T. K. Fey, 'Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution', J. Power Sources, 184, 610-616 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.081
  40. S. H. Lee, Y. J. Jeong, S. H. Lim, E. A. Lee, C. W. Yi, and K. Kim, 'The Stable Rechargeability of Secondary Zn-Air Batteries: Is It possible to recharge a Zn-air battery?', J. Korean Electrochem. Soc., 13, 45-49 (2010). https://doi.org/10.5229/JKES.2010.13.1.045
  41. S. Muller, F. Holzer, and O. Haas, 'Optimized zinc electrode for the rechargeable zinc-air battery', J. Appl. Electrochem., 28, 895-898 (1998). https://doi.org/10.1023/A:1003464011815
  42. C. C. Yang and S. J. Lin, 'Improvement of high-rate capability of alkaline Zn-MnO2 battery', J. Power Sources, 112, 174-183 (2002). https://doi.org/10.1016/S0378-7753(02)00354-3
  43. A. A. Mohamad, 'Zn/gelled 6M KOH/O2 zinc-air battery', J. Power Sources, 159, 752-757 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.110
  44. P. Arora and Z. Zhang, 'Battery Separators', J. Am. Chem. Soc., 104, 4419-4462 (2004).
  45. H. Saputra, R. Othman, A. G. E. Sutjipto, and R. Muhida, 'MCM-41 as a new separator material for electrochemical cell: Application in zinc-air system', J. Membr. Sci., 367, 152-157 (2011). https://doi.org/10.1016/j.memsci.2010.10.061
  46. M. Hanisah, O. Raihan, N. N. Anis, H. A. Mohd, and S. Hens, 'Observation On Pesponsive Ocv Variation Of Zinc-air Cell With Relative Humidity Content', IIUM Engineering Journal, 5 (2011).
  47. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, 'Lithium-Air Battery: Promise and Challenges', J. Phys. Chem., 1, 2193-2203 (2010).
  48. A. A. Mohamad, 'Electrochemical properties of aluminum anodes in gel electrolyte-based aluminum-air batteries', Corros. Sci., 50, 3475-3479 (2008). https://doi.org/10.1016/j.corsci.2008.09.001
  49. W. Li, C. Li, C. Zhou, H. Ma, and J. Chen, 'Metallic magnesium nano/mesoscale structures: their shapecontrolled preparation and mg/air battery applications', Angewandte Chemie, 45, 6009-12 (2006). https://doi.org/10.1002/anie.200600099
  50. S. R. Narayanan, P. G. K. Surya, A. Manohar, Y. Bo, S. Malkhandi, and K. Andrew, 'Materials challenges and technical approaches for realizing inexpensive and robust ironair batteries for large-scale energy storage', Solid State Ionics, 216, 105-109 (2012). https://doi.org/10.1016/j.ssi.2011.12.002

Cited by

  1. Electrochemical Properties for the Corrosion of Zinc Anode with Different Particle Size and Shape in Zinc/air Batteries vol.20, pp.3, 2013, https://doi.org/10.4150/KPMI.2013.20.3.186
  2. Design and electrochemical characteristics of single-layer cathode for flexible tubular type zinc-air fuel cells vol.740, 2018, https://doi.org/10.1016/j.jallcom.2018.01.013