DOI QR코드

DOI QR Code

Silicon Nanostructures Fabricated by Metal-Assisted Chemical Etching of Silicon

MAC Etch를 이용한 Si 나노 구조 제조

  • Oh, Ilwhan (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • 오일환 (금오공과대학교 응용화학과)
  • Received : 2013.01.21
  • Accepted : 2013.01.31
  • Published : 2013.02.28

Abstract

This review article summarizes metal-assisted chemical etching (MAC etch or MACE), an anisotropic etching method for Si, and describes principles, main factors, and recent achievements in literature. In 1990, it was discovered that, with metal catalyst on surface and $H_2O_2$/HF as etchant, Si substrate can be etched anisotropically, in even in solution. In contrast to high-cost vacuum-based dry etching methods, MAC etch enables to fabricate a variety of high aspect ratio nanostructures through wet etching process.

본 총설에서는 Si 비등방성 식각(anisotropic etching) 공정인 metal-assisted chemical etching(MAC etch 혹은 MACE) 분야 기본 원리, 중요 변수, 그리고 최근 연구 성과들을 정리하였다. 1990년에 최초로 Si 표면에 금속 촉매를 증착한 후 $H_2O_2$/HF 기반 식각을 진행하면 용액 중에서도 비등방성 식각을 통해 다양한 고종횡비(high aspect ratio) 나노구조를 형성할 수 있다는 것이 밝혀 졌다. 고가의 진공기반 장비가 필요한 건식 식각에 비해, 습식 식각을 통해서도 상대적으로 간편하고 경제적으로 종횡비가 큰 Si 마이크로/나노 구조를 만들 수 있게 되었다. 초기 연구들을 통해 MAC etch중 산화제가 촉매에 의해 환원되고, 촉매/Si 계면 근처의 Si 원자들이 선택적으로 식각/용해되어 수직 방향으로 촉매가 Si 기판을 파고 들어가며 비등방성 식각이 발생함이 밝혀졌다. MAC etch에 영향을 미치는 중요 변수로는 금속 촉매의 종류 및 모양, 식각액의 조성, Si기판의 도핑 농도이다. 또한 본 총설은 MAC etch에 의해 형성된 Si 나노 구조를 이용한 태양전지, 수소 연료, 리튬 이온 전지 등의 응용 분야를 다루었다.

Keywords

References

  1. X. G. Zhang, "Electrochemistry of Silicon and Its Oxide", Kluwer, New York (2001).
  2. X. L. Li, 'Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics', Curr. Opin. Sol. State & Mater. Sci., 16, 71 (2012). https://doi.org/10.1016/j.cossms.2011.11.002
  3. Z. P. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, 'Metal-Assisted Chemical Etching of Silicon: A Review', Adv. Mater., 23, 285 (2011). https://doi.org/10.1002/adma.201001784
  4. N. Geyer, B. Fuhrmann, Z. P. Huang, J. de Boor, H. S. Leipner, and P. Werner, 'Model for the Mass Transport during Metal-Assisted Chemical Etching with Contiguous Metal Films As Catalysts', J. Phys. Chem., C 116, 13446 (2012). https://doi.org/10.1021/jp3034227
  5. K. Peng, Y. Yan, S. Gao, and J. Zhu, 'Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition', Adv. Funct. Mater., 13, 127 (2003). https://doi.org/10.1002/adfm.200390018
  6. K. Tsujino and M. Matsumura, 'Boring Deep Cylindrical Nanoholes in Silicon Using Silver Nanoparticles as a Catalyst', Adv. Mater., 17, 1045 (2005). https://doi.org/10.1002/adma.200401681
  7. O. J. Hildreth, W. Lin, and C. P. Wong, 'Effect of Catalyst Shape and Etchant Composition on Etching Direction in Metal-Assisted Chemical Etching of Silicon to Fabricate 3D Nanostructures', Acs Nano, 3, 4033 (2009). https://doi.org/10.1021/nn901174e
  8. K. Rykaczewski, O. J. Hildreth, D. Kulkarni, M. R. Henry, S. K. Kim, C. P. Wong, V. V. Tsukruk and A. G. Fedorov, 'Mask less and Resist-Free Rapid Prototyping of Three-Dimensional Structures Through Electron Beam Induced Deposition (EBID) of Carbon in Combination with Metal-Assisted Chemical Etching (MaCE) of Silicon', ACS App. Mater. & Inter., 2, 969 (2010). https://doi.org/10.1021/am1000773
  9. O. J. Hildreth, D. Brown, and C. P. Wong, '3D Out-of-Plane Rotational Etching with Pinned Catalysts in Metal- Assisted Chemical Etching of Silicon', Adv. Funct. Mater., 21, 3119 (2011). https://doi.org/10.1002/adfm.201100279
  10. K. Rykaczewski, O. J. Hildreth, C. P. Wong, A. G. Fedorov, and J. H. J. Scott, 'Guided Three-Dimensional Catalyst Folding during Metal-Assisted Chemical Etching of Silicon', Nano Lett., 11, 2369 (2011). https://doi.org/10.1021/nl200715m
  11. K. Rykaczewski, O. J. Hildreth, C. P. Wong, A. G. Fedorov, and J. H. J. Scott, 'Directed 2D-to-3D Pattern Transfer Method for Controlled Fabrication of Topologically Complex 3D Features in Silicon', Adv. Mater., 23, 659 (2011). https://doi.org/10.1002/adma.201003833
  12. C. Chartier, S. Bastide, and C. Levy-Clement, 'Metal-Assisted Chemical Etching of Silicon in HF/$H_{2}O_{2}$', Electrochim. Acta, 53, 5509 (2008). https://doi.org/10.1016/j.electacta.2008.03.009
  13. Y. Q. Qu, L. Liao, Y. J. Li, H. Zhang, Y. Huang, and X. F. Duan, 'Electrically Conductive and Optically Active Porous Silicon Nanowires', Nano Lett., 9, 4539 (2009). https://doi.org/10.1021/nl903030h
  14. X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, and X. Duan, 'Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires', ACS Appl. Mater. & Inter., 3, 261 (2011). https://doi.org/10.1021/am1009056
  15. S. Cruz, A. Honig-Dorville, and J. Muller, 'Fabrication and Optimization of Porous Silicon Substrates for Diffusion Membrane Applications', J. Electrochem. Soc., 152, C418 (2005). https://doi.org/10.1149/1.1914747
  16. M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, and N.-B. Wong, 'Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal- Assisted Chemical Etching', J. Phys. Chem. C, 112, 4444 (2008).
  17. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, 'Enhanced Thermoelectric Performance of Rough Silicon Nanowires', Nature, 451, 163 (2008). https://doi.org/10.1038/nature06381
  18. A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. Yang, 'Single Crystalline Mesoporous Silicon Nanowires', Nano Lett., 9, 3550 (2009). https://doi.org/10.1021/nl9017594
  19. R. Chaoui, B. Mahmoudi, and Y. S. Ahmed, 'Porous Silicon Antireflection Layer for Solar Cells Using Metal-Assisted Chemical Etching', Phys. Status Solidia, 205, 1724 (2008). https://doi.org/10.1002/pssa.200723598
  20. M. Lipinski, 'Macroporous Texturing of Multicrystalline Silicon for Solar Cells', Arch. Metal. Mater., 53, 185 (2008).
  21. D. H. Wan, H. L. Chen, S. Y. Chuang, C. C. Yu, and Y. C. Lee, 'Using Self-Assembled Nanoparticles to Fabricate and Optimize Subwavelength Textured Structures in Solar Cells', J. Phys. Chem. C, 112, 20567 (2008). https://doi.org/10.1021/jp807814u
  22. K.-Q. Peng, X. Wang, X.-L. Wu, and S.-T. Lee, 'Platinum Nanoparticle Decorated Silicon Nanowires for Efficient Solar Energy Conversion', Nano Lett., 9, 3704 (2009). https://doi.org/10.1021/nl901734e
  23. X. W. Geng, M. C. Li, L. C. Zhao, and P. W. Bohn, 'Metal-Assisted Chemical Etching Using Tollen's Reagent to Deposit Silver Nanoparticle Catalysts for Fabrication of Quasi-ordered Silicon Micro/Nanostructures', J. Electron. Mater., 40, 2480 (2011). https://doi.org/10.1007/s11664-011-1771-1
  24. K.-Q. Peng and S.-T. Lee, 'Silicon Nanowires for Photovoltaic Solar Energy Conversion' Adv. Mater., 23, 198 (2011). https://doi.org/10.1002/adma.201002410
  25. I. Oh, J. Kye and S. Hwang, 'Enhanced Photoelectrochemical Hydrogen Production from Silicon Nanowire Array Photocathode', Nano Lett., 12, 298 (2012). https://doi.org/10.1021/nl203564s
  26. B. M. Bang, H. Kim, H. K. Song, J. Cho, and S. Park, 'Scalable Approach to Multi-dimensional Bulk Si Anodes via Metal-assisted Chemical Etching', Energy & Environ. Sci., 4, 5013 (2011). https://doi.org/10.1039/c1ee02310a
  27. Y. M. Liu, B. L. Chen, F. Cao, H. L. W. Chan, X. Z. Zhao, and J. K. Yuan, 'One-pot Synthesis of Three-dimensional Silver-embedded Porous Silicon Micronparticles for Lithium-ion Batteries', J. Mater. Chem., 21, 17083 (2011). https://doi.org/10.1039/c1jm13048j
  28. X. Zhong, H. Zhang, Y. Liu, J. Bai, L. Liao, Y. Huang, and X. Duan, 'High-Capacity Silicon-Air Battery in Alkaline Solution', ChemSusChem, 5, 177 (2012). https://doi.org/10.1002/cssc.201100426

Cited by

  1. Photoelectrochemical Water Splitting Using GaN vol.17, pp.1, 2014, https://doi.org/10.5229/JKES.2014.17.1.1