• Title/Summary/Keyword: Air Blower

Search Result 237, Processing Time 0.026 seconds

The Study of Wind Blower Characteristics Using a Blade Type Corona Motor (코로나 모터를 이용한 송풍장치의 특성 연구)

  • Jung, Jae-Seung;Kim, Hyung-Pyo;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.76-81
    • /
    • 2013
  • In this paper, a corona motor with blade type electrodes has been employed as a wind blower. The rotation speed was influenced significantly by the polarity of applied voltage and the number of blades. Therefore the effect of polarity of applied voltage and the number of blades on the electrical and mechanical fundamental properties of corona motor were investigated experimentally. The rotation speed decreased for increasing of number of blades, because the mass of blades increased. But the amount of air blow increased despite decreasing of the rotation speed, because air volume is not only influenced by rotation speed but also the number of blades and ionic wind which generated between blade tips and a induction electrode. Although space occupied by blades of the corona motor is smaller than the whole area of the blast pipe, wind rises a whole range of a wind blower for such reasons.

Development of the APU Engine Cold Flow Test Rig (APU 엔진 비연소장 연소기 실험장치 구축)

  • Choi, Chea-Hong;Choi, Seong-Man;Jeong, Young-Woon;Min, Dai-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.268-271
    • /
    • 2008
  • In order to understand mixing characteristics of the APU combustor, sector combustor which size is 1/6 of the real combustor was manufactured. To see the inner side of combustor, Poly Carbonate material is used as a combustor riner. Turbo blower is used as a air supplying device and valves are used as controling the air flow. Maximum flow rate of the blower is 7 $m^3$/min and maximum inlet velocity is up to 100 m/s.

  • PDF

Analyzing the air tightness of public housing through a blower door test (Blower door test를 통한 공공행복주택의 침기율 분석)

  • Kim, Jae-Hee;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.167-168
    • /
    • 2023
  • The government has established a zero-energy roadmap in accordance with its 2050 carbon neutrality strategy, and from 2023 onwards, residential buildings with 30 generations or more must be constructed as zero-energy structures. In response to this, measures for energy conservation through enhanced building tightness are being developed. The LH (Land and Housing Corporation) aims to achieve the first-stage building tightness performance targets by 2022 in preparation for this. Currently, South Korea has the "KS L ISO9972 - Building Tightness - Measuring the airtightness of buildings by the fan pressurization method" as the method for measuring building tightness, which was established in 2006 and revised in 2016. In practice, the airtightness is measured using the Blower Door Test method, and it is expressed as ACH50 (the number of air changes per hour at a pressure difference of 50 Pa between the indoor and outdoor environments). This study aims to measure and analyze the airtightness of Happy Homes constructed from 2020 to 2022, categorized by building type.

  • PDF

A Study on Mount Vibration Reduction of a Centrifugal Turbo Blower for FCEV (FCEV용 원심형 터보 블로워의 마운트 진동 저감에 관한 연구)

  • Kim, Yoon-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1073-1081
    • /
    • 2008
  • A centrifugal turbo blower of the fuel cell electric vehicle (FCEV) operates at very high speed above 30000 rpm in order to increase the pressure of the air, which supplied to a stack of FCEV, using rotation of its impeller blades. Vibration which originated from the blower is generated by unbalance of mechanical components, rotation of bearings and rotating asymmetry that rotate at high speed. The vibration is transmitted to receiving structure through vibration isolators and it can causes serious problems in the noise, vibration and harshness(NVH) performance. Thus, the study about reducing this kind of vibration is an important task. In this paper, dynamic analysis of the blower executed by numerical simulation and experimental analysis of the blower is also performed. Then, measured and simulated results are compared in order to validate of the simulation. Finally, reducing vibration through modifying mount stiffness is the main purpose of this paper.

A Study on the Development of 3rd Stage IGG Blower for Shipbuilding Using CFD (CFD를 이용한 선박용 IGG Blower 개발에 관한 연구)

  • Lee, Jong-Jing;Yi, Chung-Seub;Jeong, Soon-Jae;Jang, Sung-Cheol;Kim, Chi-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1309-1314
    • /
    • 2008
  • I.G.G is abbreviation for Inert Gas Generator, High temperature in Cargo Tank it desulfurize, exhausted and froze the gas that combined brimstone element and soot, then supply Inert gas by blower, and mack tank inside incombustible range this is equipment that nip in the bud the explosion. The blower for suppling inactivated gas has big impeller with heavy weight to achieve the high pressure, it causes a delay for first operation time and too much load is delivered to motor, total destruction by fire of motor is happening frequently. On this research, we will reduce the size & weight of impeller and install it with several stage, it makes an effect for reducing the first operation time. We also intend to contribute to efficient IGG blower design by research a flowing & pressure specialty from the diameter of impeller, number of blade, and size of casing.

  • PDF

A Study on the Performance of Centrifugal Blowers by Blades Characteristics (원심형 송풍기의 날개 특성에 따른 성능에 관한 연구)

  • Kim, J.W.;Ahn, E.Y.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.13-19
    • /
    • 2004
  • Centrifugal blowers are widely used for air handling units in industry applications. The blower has a centrifugal impeller and a scroll casing including a driving component such as an electric motor. The impeller takes forward or backward blades to induce flows into the blower, Comprehensive investigation according to the two kinds of blades is systematically carried out for a guidance of design for this kind research. It is observed that flow rate of the blower with forward blades is larger than that of the system with backward blades. Otherwise, the system noise is more pronounced in the case of the blower with forward blades. The reason is due to larger velocity from the rotating forward blades that pose obtuse angle with the circumferential direction. The distinguished characteristics are validated by a parallel experiments with a wind tunnel and in an anechoic chamber. Numerical analysis for the system shows detail information inside the blades and the casing. A series of figures to show the flow details offer deep understanding of the performance of a centrifugal blower with different blades.

A study on fuzzy control for vehicle air conditioner (자동차용 공기조화기의 퍼지 제어에 관한 연구)

  • 김양영;봉재경;진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.516-519
    • /
    • 1997
  • In this paper, the control of the temperature for the vehicle air conditioner is implemented with the fuzzy controller using a micro controller. The linguistic control rules of the fuzzy controller are separated into two out variables(multi input multi output ; MIMO) : one is those for the blower motor, and the other is those for air mix door. The error in fuzzy controller, the input variable is defined as difference between the reference temperature and the actual temperature in the cabin room. The fuzzy control rules are established from the human operator experience, and based engineering knowledge about the process. The method of the center of gravity is utilized for the defuzzification.

  • PDF

Development of Advanced TurboBlowers Using High-Spped BLDC Motors and Foil Air Bearings (차세대 신개념 터보블로워의 세계최초 상품화 개발)

  • Oh, Jongsik;Lee, Heonseok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.177-182
    • /
    • 2002
  • In the paper, the development of high-speed industrial turbo blowers with foil air bearings is presented as a first successful commercialization in the world. Their target market is various from wastewater treatment to cement factory processes which require compressed air ranging between 0.6 and 0.8 bar gauge. Employing the state-of·the-art technology of the high-speed BLDC motors, the bump-type foil air bearings and the high- efficient turbo impellers/diffusers, so much compact, efficient and silent blower machines of a single stage are now available in the market, aiming to replace the existing inefficient, bulky and noisy ones, such as roots blowers. The first production lines are established fur 25,75 and 150 hp class blowers. Rotational speeds from about 20,000 to 80,000 rpm are realized directly from the high-speed BLDC motors without any gear boxes, and no lubrication oil is required. A brief introduction of design, manufacture and test results is presented fur mechanical, electrical and aerodynamic performance.

  • PDF

Oxygen Transfer Characteristics of an Ejector Aeration System

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2012
  • The objective of this study was to investigate the oxygen transfer characteristics of an ejector aeration system. In order to evaluate the oxygen transfer performance of the ejector aeration system, a comparative experiment was conducted on a conventional blower aeration system. The effect of entrained air flow rate and aerating water temperature on the oxygen transfer efficiency was investigated. The dissolved oxygen concentration increased with increasing entrained air flow rate, but decreased with increasing aerating water temperature for two aeration systems. The volumetric mass transfer coefficient increased with increasing entrained air flow rate and with increasing aerating water temperature for both aeration systems. The average mass transfer coefficient for the ejector aeration system was about 20% and 42% higher than that of the blower aeration system within the experimental range of entrained air flow rates and aerating water temperatures.

A study on the Characteristics of the Blowing type Rotary Burner (송풍형 로터리 버너의 특성 연구)

  • Choi Y. H.;Kim K. H.;Yoon S. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.303-306
    • /
    • 2002
  • Liquid atomization by means of a spinning cup is widely used as a device for combustion, in cooling and spray drying. In this study, the blowing type rotary atomizer was experimental carried out the investigations on the characteristics of the blowing type rotary atomizer which is an air flow energy of blower instead of an electric motor most commonly used to a driven energy. The analysis on the rotary cup speed, air velocity with the blower conditions was performed and also the drop size was measured using LDPA. It was tried to analyzed on air-nozzle size and liquid flowrate as the result. It was found that the increase of the relative velocity between liquid and air improve significantly atomization liquid, and decrease of the liquid flowrate improved the maximum drop size though the mean drop size is really the same.

  • PDF