• Title/Summary/Keyword: Air Bar

Search Result 322, Processing Time 0.04 seconds

COMMISSIONING RESULT OF THE KSTAR HELIUM REFRIGERATION SYSTEM

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Joo-Shik;Cho, Myeon-Chul;Kwon, Il-Keun;Andrieu, Frederic;Beauvisage, Jerome;Desambrois, Stephane;Fauve, Eric
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.467-476
    • /
    • 2008
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (RRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K without liquid nitrogen ($LN_2$) pre-cooling has been manufactured and installed. The main components of the KST AR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The process helium is compressed from 1 bar to 22 bar passing through the WCS and is supplied to cryogenic devices. The main components of cryogenic devices are consist of cold box (C/B) and distribution box (D/B). The C/B cool-down and make the various cryogenic helium for the KSTAR Tokamak and the various cryogenic helium is distributed by the D/B as per the KSTAR requirement. In this proceeding, we will present the commissioning results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

Study on the performance characteristics of a new CO2 auto-cascade heat pump system (새로운 CO2 오토 캐스케이드 열펌프 시스템의 성능특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.191-196
    • /
    • 2017
  • Owing to the harmful environmental effects of HCFC and CFC refrigerants discovered in the late 20th century, the need for environmentally friendly refrigerants such as $CO_2$ in cooling systems has increased. Air-source $CO_2$ heat pumps that utilize ambient heat in cold winter are less efficient because of a higher evaporation temperature, and it is difficult to manufacture the components of the heat pump owing to a super critical pressure of over 130 bar. This research aims to overcome these disadvantages and improve energy efficiency by introducing a new lower-pressure $CO_2$ auto-cascade heat pump system. $CO_2$-R32 zeotropic refrigerants were considered for two-stage expansion and effective cooling heat exchanging system configurations of the new auto-cascade heat pump. The results indicated that the efficiency of the two-stage expansion system was higher than that of the original one-stage expansion system. Furthermore, the two-stage expansion system showed significant performance improvements when the two-stage expansion stage from highest pressure of 70bar, intermediate expansion pressure of 25bar, and final low pressure of 10bar is applied. The COP of the new two-stage auto-cascade system (2.332) was 43.15% higher than that of the present simple auto-cascade system (1.629). Refrigerants having an evaporation temperature of $-10^{\circ}C$ or lower can be obtained that can be easily evaporated in an evaporator even at a low temperature.

Injection Condition Effects of a Pintle Injector for Liquid Rocket Engines on Atomization Performances (액체로켓 핀틀 인젝터의 분사조건이 미립화 성능에 미치는 영향)

  • Son, Min;Yu, Kijeong;Koo, Jaye;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.114-120
    • /
    • 2015
  • Effects of injection conditions on a pintle injector which is proper to recent liquid rocket engines requiring low cost, low weight, high efficiency and reusability were studied. The pintle injector with a typical moving pintle was used for atmospheric experiment using water and air. Injection pressures of water were considered 0.5 and 1.0 bar, 0.1 to 1.0 bar for injection pressures of air and 0.2 to 1.0 mm for pintle opening distance. Sauter mean diameters (SMD) of spray was measured at 50 mm distance from a pintle tip and SMD was treated as a representative parameter in this study. As a result, because of shape characteristics of the pintle injector, there was a transient region between the pintle opening distances of 0.6 and 0.7 mm and this region affected to mass flow rates and SMDs. Also, Reynolds numbers for gas, Weber numbers and momentum ratios were adopted as major non-dimensional paramters and the momentum ratio has strong correlation with SMD.

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model

  • Liu, Kang-Lin;Liao, Rui-Jin;Zhao, Xue-Tong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1804-1814
    • /
    • 2015
  • In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In addition, the photoionization and secondary electron emission effect are also incorporated within the model as well. Based on this model, electron mean energy distribution (EMED), electron density distribution (EDD), generation and dissipation rates of electron at 6 typical time points during a pulse are discussed emphatically. The obtained results show that, the maximum of electron mean energy (EME) appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density (ED) in cathode sheath almost keeps 0, and the maximum of ED appears in the outer layer of the cathode sheath. Among all reactions, R1 and R2 are regarded as the main process of electron proliferation, and R22 plays a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air.

The Characteristics of Ultrasonic Wave Transmitted Through Drying Wood

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • The possibility of using the properties of an ultrasonic wave as a means for monitoring the moisture content of a board during drying was investigated. The ultrasonic wave signals are influenced by moisture content and other factors such as temperature, moisture gradient and coupling area. The effect of temperature was examined by measuring the transit times, amplitudes and velocities of ultrasonic waves transmitted through air, a metal bar and a board at various temperatures. The effect of a moisture gradient was studied using a model specimen composing five wood pieces of various moisture contents. The velocity and amplitude of the ultrasonic waves transmitted through air increase with temperature, while those through a metal bar and a board decrease. It was confirmed that the temperature effect is partially attributed to the change of transducer's properties. The effect of a moisture gradient on the velocity of an ultrasonic wave varies with the average moisture content of a board. As the dimension of the end face of a board increases the velocity of an ultrasonic wave increases and low frequency components more dominates than high frequency components. The transit times of ultrasonic waves transmitted through a board during kiln drying reflect the temperature steps in the drying schedule and the transducer temperatures.

Experimentally Investigation on Combustion Phenomena in Micro Combustor for the Application of Power MEMS (초소형 연소기에서의 연소 현상 실험적 연구)

  • 나한비;김세훈;최원영;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The characteristic of constant volume micro combustor was investigated experimentally. The shape of micro combustor was cylindrical and has row aspect ratio or has relatively large diameter compared with chamber height. Diameter and chamber height was varied to investigate the geometric effect of combustor on the flame propagation. Diameter of 15 mm and 7.5 mm was designed while chamber height was designed to be 1mm, 2mm, and 3mm. The effect of initial pressure was also investigated parametrically from 1bar to 3bar. The gas used in this study was stoichiometric mixture of methane and air. The maximum pressure achieved in down scaled combustors was lower than that of conventional combustor because heat loss to wall was dominant as expected. The maximum pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was possible when the specific condition was satisfied. Although the quenching distance of stoichiometric mixture of CH4 and Air is 2.5 mm, the flame could propagate even under quenching distance as the initial pressure increased.

  • PDF

Design and Evaluation of a Crankcase Relief Valve Spring for LNG-Fueled Ships (LNG 연료추진 선박용 크랭크실 릴리프 밸브 스프링의 설계 및 평가)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Ahn, Byoung Hoon;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.263-269
    • /
    • 2015
  • Growing concerns regarding air pollution have recently increased the demand for liquefied natural gas (LNG) fueled ships. LNG-fueled ships are equipped with an explosion relief valve in the crankcase to relieve excessive pressure and stop flames from emitting from the crankcase. In this study, a finite element analysis was conducted to evaluate the crankcase relief valve disk spring design using an ANSYS Workbench, v.15. The setting pressure, leak and explosion test performed by european standard EN14797 to evaluate function and mechanical integrity of crankcase relief valve. The tests results indicate that the pressure of the crankcase relief valve is 3.05 bar, with no air leakage at 2.97 bar. Finally, the mechanical integrity of the crankcase relief valve was confirmed through an explosion test in which the valve plate assembly, flame arrester, and other parts were safe from fracturing.

Effects of Channel Amplitude Ratio on Flow and Heat Transfer Characteristics of Primary Surface Heat Exchanger for ORC (유기 랭킨 사이클용 스크롤 팽창기 성능 시험에 관한 연구)

  • Moon, Je-Hyeon;Park, Keun-Tae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.151-157
    • /
    • 2014
  • An algebraic scroll expander has been fabricated and tested in a R134a Rankine cycle with heat source of 20 kW. For the operating conditions of 20~26 bar and $90{\sim}93^{\circ}C$ at the expander inlet and 8~9 bar at the outlet, the expander produced the shaft output power of about 0.6~0.7 kW in the operating speed range of 1500~2000 rpm. These correspond to the expander efficiency of 40~45%. The volumetric efficiency increased with increasing of the expander speed, reaching to 80% at 2000 rpm. Comparing to numerical simulation results, mechanical efficiency from the test data was found to be considerably low by as much as 30%, indicating that reduction in the frictional loss should be made to improve the scroll expander efficiency.

The Usability Test of Manufactured Rounded Extension in Proton Therapy (자체 제작한 양성자 치료용 Rounded Extension의 유용성 평가)

  • Park, Ji-Yeon;Jang, Yo-Jong;Kang, Dong-Yun;Yeom, Du-Seok;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • Purpose: Long Extension (LE) is used in proton therapy for lung and abdomen. However, it has limitations in surface area, produces collision in posterior oblique beam which creates limitations in various gantry angles in planning therapy and increases air gap (distance between patient and compensator). Therefore, this study investigates the usability of manufactured Rounded Extension (RE) in comparison to LE to use the most suitable extension in proton therapy. Materials and Methods: To compare structural features of LE and RE. This study investigated usable gantry angle for snout sizes 100, 180 and 250 and CT scanned Humanoid phantom. And it compared the air gap in posterior oblique direction. Results: The structural features of two extensions are as follow. Because of the existence of supporting bar, the width of LE was 40 cm and RE was 50 cm. Result of the investigation of usable gantry angle for snout sizes 100, 180 and 250 are as follow. LE is ${\pm}36$ (average) at 180 degree and RE is ${\pm}70$ (average). And also, the air gap of RE is decreased by 11.3 cm in average at the same gantry angle. Conclusion: Manufactured RE for proton therapy has several benefits than LE. Its therapy surface area is wider and range of usable gantry angle is also wider. Also, the air gap at the posterior oblique beam has decreased. Therefore the usability of RE in proton therapy of lung and abdomen will be increased compared to LE. However, the air gap of proton therapy at the lateral direction may be increased, so there may be need for make up to decrease air gap at the lateral direction in the future.

  • PDF

Evaluation of thermal characteristics by cutting environments in high speed ball end-milling (볼엔드밀을 이용한 고속가공에서 가공환경 변화에 따른 열특성 평가)

  • 이채문
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.34-38
    • /
    • 2000
  • The trend of cutting process today goes toward higher precision and higher efficiency. Many thermal/frictional troubles occur in high-speed machining of die and mold steels.In this paper, the thermal characteristics are evaluated in high sped ball end-milling of hardened steel(HRc42). Experimental work is performed on the effect of cutting environments on tool life and cutting temperature. Cutting environments involve dry, wet(20bar), compressed chilly air at -9$^{\circ}C$, compressed chilly air at -35$^{\circ}C$. The measuring technique of cutting temperature using implanted thermocouple is used. The cutting temperature is about 79$0^{\circ}C$, 35$0^{\circ}C$ and 54$0^{\circ}C$ in dry, wet and compressed chilly air at +9$^{\circ}C$, respectively. The tool life for compressed chilly air at -9$^{\circ}C$ is longer than all other cutting environments in experiment.

  • PDF