• Title/Summary/Keyword: Air Bar

Search Result 322, Processing Time 0.024 seconds

Effects of Aromatics and T90 Temperature for High Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 고세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.371-377
    • /
    • 2011
  • The aim of this study is to investigate the effects of aromatics and T90 temperature for high cetane number (CN) of diesel fuels on combustion and exhaust emissions in low-temperature diesel combustion in a 1.9 L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Four sets of fuels with CN 55, aromatic content of 20% or 45% (vol. %), and T90 temperature of $270^{\circ}C$ or $340^{\circ}C$ were tested. Given engine operating conditions, all the fuels showed the same tendency of decrease of PM with an increase of an ignition delay time. At the same ignition delay time, the fuels with high T90 produced higher PM. At the same MFB50% location the amount of NOx was similar for all the fuels. Furthermore, at the same ignition delay time the amounts of THC and CO were similar as well for all the fuels. The amount of THC and CO increased with an extension of the ignition delay time mainly because of the increase of fuel-air over-mixing.

Experimental Study on Firing Test of LPI Engine Using Gasoline Fuel for Improving the Production Process at End of line (엔진 착화 라인의 생산성 향상을 위한 LPI 엔진 가솔린 연료 적용성에 대한 실험적 연구)

  • Hwang, In-Goo;Choi, Seong-Won;Myung, Cha-Lee;Park, Sim-Soo;Lee, Jong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • The purpose of this study was to evaluate the effects of gasoline fuel to the LPI engine. Firing test bench was used in order to assess the effect on gasoline-injected LPI engine. Gasoline fuel was supplied into the reverse direction(3-4-2-1 cylinder) at 3.0 bar with commercial gasoline fuel pump. Engine test was performed using the firing test mode at end of line. The deviations of excess air ratio of each cylinder and maximum combustion pressure using gasoline fuel were within 0.1 and $1{\sim}2\;bar$. Engine start time was measured with changing coolant temperature at $20^{\circ}C,\;40^{\circ}C,\;80^{\circ}C$, respectively. Residual gasoline volume in the fuel line was measured about 32 cc after firing test and it was less than 2 cc within 10 seconds purging. To simulate the end of line, the residual gasoline in the fuel line was purged during 5 and 10 seconds. Start time of LPI engine with LPG fuel were 0.61 and 0.58 seconds. This work showed that severe problems such as misfiring and liner scuffing were not occurred applying gasoline fuel to LPI engine.

Development of a Pneumatic Semi-Automatic Clutch for Commercial Vehicles based on the CAN Communication (CAN통신 기반의 상용차용 공압구동형 세미오토 클러치 개발)

  • Kim, Seong-Jin;Lee, Dong-Gun;Ahn, Kyeong-Hwan;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4742-4748
    • /
    • 2014
  • A semi-automatic clutch was developed for drivers of vehicles with manual transmission. The clutch is operated by pressing a switch on the gear stick without stepping on a clutch pedal when the driver wants to shift gears. To automatic control a clutch, driving information is provided by sensors installed under the vehicle. On the other hand, sensors are prone to failure under severe driving conditions and a long time is needed to install or repair these sensors in the vehicle. In this paper, a semi-automatic clutch that received driving information by CAN communication from the ECU was developed and a pneumatic actuator was used to operate the clutch. The semi-automatic clutch by a pneumatic cylinder was operated with a supply air pressure of more than 3bar.

Capacity of RC Concrete Column with Holes (Rc 유공 콘크리트 기둥의 내력에 관한 실험적 연구)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.92-95
    • /
    • 2006
  • This study is to find out how column with hole is behaved, compared to the normal one without hole. There might be existing buildings to make holes in the reinforced concrete column. Columns are made with commercially used compressive strength $240kg/cm^{2}$, air amount 5.0%, using re-bar of diameter D13 and D10 having yielding stress $4,000kg/cm^{2}$. The specimen were cured with temperature of $21{\pm}3^{\circ}C$. All specimens of five variables and all holes are geometrically considered and configurated. D3, D5 mean diameter 3cm and 5cm respectively. H1, H2 are the number of holes. Compressive pressure was forced in accordance with KS, following $0.6{\pm}0.4N/mm^{2}$ speed. Main re-bar's were strained with almost same shape through all the specimens. Hole diameter 5cm-having specimen showed cracking around hole. strains of back and front gauges of the specimen were showed similarly. Specimen having two holes in left and right from longitudinally axis resisted 7% less than the one having hole centrically from longitudinal axis. One hole having specimen with diameter 5cm resisted only 3% less than in case of 3cm diameter hole. Hole having in left and right from longitudinal axis will be less resistant than the case longitudinally arranged. Diameter 3cm hole showed less 10% capacity than normal one without hole. Capacity loss difference between diameter 3cm and 5cm showed almost none in case that they are arranged longitudinally.

Microstructure and Tensile Properties of 700 MPa-Grade High-Strength and Seismic Resistant Reinforced Steel Bars (700 MPa급 고강도 및 내진 철근의 미세조직과 인장 특성)

  • Hong, Tae-Woon;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.391-397
    • /
    • 2018
  • This study deals with the microstructure and tensile properties of 700 MPa-grade high-strength and seismic reinforced steel bars. The high-strength reinforced steel bars (600 D13, 600 D16 and 700 D13 specimens) are fabricated by a TempCore process, while the seismic reinforced steel bar (600S D16 specimen) is fabricated by air cooling after hot rolling. For specimens fabricated by the TempCore process, the 600 D13 and 600 D16 specimens have a microstructure of tempered martensite in the surface region and ferrite-pearlite in the center region, while the 700 D13 specimen has a microstructure of tempered martensite in the surface region and bainite in the center region. Therefore, their hardness is the highest in the surface region and shows a tendency to decrease from the surface region to the center region because tempered martensite has a higher hardness than ferrite-pearlite or bainite. However, the hardness of the 600S D16 specimen, which is composed of fully ferrite-pearlite, increases from the surface region to the center region because the pearlite volume fraction increases from the surface region to the center region. On the other hand, the tensile test results indicate that only the 700 D13 specimen with a higher carbon content exhibits continuous yielding behavior due to the formation of bainite in the center region. The 600S D16 specimen has the highest tensile-to-yield ratio because the presence of ferrite-pearlite and precipitates caused by vanadium addition largely enhances work hardening.

Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler - Part Load Test Results - (멀티버너 보일러용 열교환기 모듈 특성 시험 - 부하별 특성 결과 -)

  • Kim, Jong-Jin;Sung, Choi-Kyu;Ki, Ho-Choong;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1025-1030
    • /
    • 2008
  • We develop heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a heat recovery steam generator (HRSG). This heat recovery system has 4 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 10 bar and tested steam pressure is 4 bar. In order to test these heat exchanger modules, we make a 0.5t/h flue tube boiler (LNG, $40\;Nm^3/h$). The test results of 100% boiler load show that heat transfer rate of 1st module is 49.7 Mcal/h which is 34% of total heat transfer rate and that of 2nd module is 82.6 Mcal/h which is 57% of total heat transfer rate. The reason of higher the heat transfer rate of 2nd module than that of 1st module is that the 2nd heat exchanger module has finned tubes instead of bare tube. The boiler load 50% results show that only 2 heat exchanger modules are needed to extract the heat from the flue gas to water. From this result, it is very important of optimum design of the first finned tube among all water tubes.

  • PDF

A Numerical Analysis on High Pressure Control Valve for Offshore (해양구조물용 고압 컨트롤 밸브 수치해석)

  • Yi, Chung-Seub;Jang, Sung-Cheol;Jeong, Hwi-Won;Nam, Tae-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

A Study on the dosimetry in boundary of shielding block in high energy irradiation (고에너지 방사선치료에서 차폐물 경계부위의 선량분포에 관한 고찰)

  • Kim, Myung-Se;Kim, Sung-Kyu;Shin, Sei-One
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.2
    • /
    • pp.115-120
    • /
    • 1990
  • Scatter-air ratios are used for the purpose of calculating scattered dose in the medium. The computation of the primary and the scattered dose separately is particularly useful in the dosimetry of irregular fields with shielding block in radiation field, dose distribution of scattered radiation using 18MeV Linear accelerator and Co-50 teletherapy measured. The effect of scattered radiation dose by protecting block was been ignored in radiation therapy, 2-3% of scattered radiation may be 90-200 cGy which could be influence vitial complications such as cataract, oligospermia or sterility. So that exect calculation of such scattered radiation especially for large field $\bar{c}$ small protection of vitial organ is very important. The purpose of this article is to calculate scattered radiation by protecting block exactly for irregular field $\bar{c}$ Linac or Co-60 irradiation and to applicate these data in clinical radiation field. Authors could obtain following results. 1. The lesser angle between shielding block showed more scattered radiation. 2. With decreasing distance between shielding blocks, the dependent of scattered radiation were increased. 3. Output of 18MeV Linear accelerator and Co-60 was related linear proportion on field size, but independent according to the size of shielding block in 18MeV Linear accelerator.

  • PDF

A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load - (연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 -)

  • Lee, Sang Man;Jeong, Young Sik;Chae, Jae Ou
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.

Commissioning Results of the Warm Compression System for the KSTAR Helium Refrigeration System (KSTAR 헬륨냉동기의 압축시스템 시운전 결과)

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Ju-Shik;Kwon, Il-Keun;Cho, Myeon-Chul;Yang, Seung-Han
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.125-130
    • /
    • 2008
  • The main components of the KSTAR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The WCS itself consists of the compressor station (C/S) and the oil removal system (ORS). The process helium is compressed from 1 bar to 22 bar maximum in the C/S and downstream, the ORS removes the oil mixed in the helium to less than 10 ppbw as per the operation criteria of the cryogenic devices of the KSTAR HRS. After the installation, the pre-commissioning and commissioning activities were started on July, 2007. Before the start-up of the C/S, vibration measurement and the skid reinforcement jobs were performed for stable operation of the C/S. The results of the WCS performance tests met the requirements of the KSTAR HRS but satisfied the vibration level criteria only at the compressors' full load condition.

  • PDF