• 제목/요약/키워드: Air/Liquid Mass Ratio

검색결과 60건 처리시간 0.029초

액체분무의 증발 및 연소에 관한 수치적 연구 (A Numerical Study on Evaporation and Combustion of Liquid Spray)

  • 정인철;이상용;백승욱
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2073-2082
    • /
    • 1991
  • 본 연구에서는 선회유동과 재순환영역이 있는 제한된 동축 분류유동(confined coaxial jet flow)을 갖는 연소기에 대하여 노즐을 통하여 분사된 연료액적의 증발 및 연소, 그리고 주위기체유동에 관한 제반현상을 정상상태 하에서 모사하고자 하는데 그 목적이 있으며 수치계산에 의한 이론적 해석방법으로 기상은 오일러 방식, 액상은 라 그란지 방식을 채택하였고 후술될 증발 및 연소모델을 적용하였다.

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

전산유체 기법을 이용한 용존공기부상법에서의 접촉도 조건변화에 따른 충돌효율평가 (Collision Efficiency Estimation in the DAF Contact Zone using Computational Fluid Dynamics)

  • 김성훈;유제선;박희경
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.201-207
    • /
    • 2004
  • Dissolved air flotation (DAF) is a solid-liquid separation process that uses fine rising bubbles to remove particles in water. Most of particle-bubble collision occurs in the DAF contact zone. This initial contact considered by the researchers to play a important role for DAF performance. It is hard to make up conceptual model through simple mass balance for estimating collision efficiency in the contact zone because coupled behavior of the solid-liquid-gas phase in DAF system is 90 complicate. In this study, 2-phase(gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. For the modeling of turbulent 2-phase flow in the reactor, the standard $k-{\varepsilon}$ mode I(liquid phase) and zero-equation(gas phase) were used in CFD code because it is widely accepted and the coefficients for the model are well established. Particle-bubble collision efficiency was calculated using predicted turbulent energy dissipation rate and gas volume fraction. As the result of this study, the authors concluded that bubble size and recycle ratio play important role for flow pattern change in the reactor. Predicted collision efficiency using CFD showed good agreement with measured removal efficiency in the contact zone. Also, simulation results indicated that collision efficiency at 15% recycle ratio is higher than that of 10% and showed increasing tendency of the collision efficiency according to the decrease of the bubble size.

기체/액체를 사용하는 Swirl 인젝터의 간섭효과에 관한 연구 (A Study on the Interaction Effect Between Spray Fan Formed by Gas/Liquid Swirl Injector)

  • 정래혁;김유;차영란;박정배;박우동
    • 한국추진공학회지
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 1997
  • 본 연구는 기체/액체를 사용하는 Swirl injector에 의해서 형성된 Spray fan 사이의 간섭효과를 평가하기 위한 실험연구로서, 공급압력과 인젝터 사이의 거리를 변수로 하여 실험을 수행하였다. 사용되는 기체는 공기, 액체는 물을 사용하였으며, 분사된 물의 질량분포를 채집하여 Spray fan의 간섭효과를 평가하였다. 본 연구 범위에서 실험결과는 다음과 같다. 액체만 공급하여 형성된 두 개의 Spray fan이 충돌할 경우, 충돌점 하부에 질량이 집중적으로 포집되었고, 공급압력이 증가함에 따라 이러한 간섭현상은 감소하였다. 공기와 물이 동시에 공급될 경우에도 충돌점 하부에 질량이 집중되는 현상을 나타냈으나, 공기압력대 물 압력비가 증가함에 따라 이러한 간섭현상은 감소하였다.

  • PDF

전단동축형 분사기들의 미립화 특성에 대한 연구 (Study on Atomization Characteristics of Shear Coaxial Injectors)

  • 안종현;이근석;안규복
    • 한국분무공학회지
    • /
    • 제26권1호
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석 (Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method)

  • 윤일철;이재헌
    • 대한기계학회논문집
    • /
    • 제19권12호
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

삼단중유연소 버너에서 다단비가 연소현상에 미치는 영향에 대한 수치 연구 (Numerical study on the effects of air staging on combustion in the three air stage heavy oil fired combustion system)

  • 이승수;김혁주;박병식;김종진;최규성
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.235-241
    • /
    • 2004
  • Computations were performed to investigate the effects of air staging on combustion in three stage heavy-oil fired combustion burner. The burner was designed for 3 MW. Different amounts of air are introduced into each 3 three stages by means of each dampers. The goal of the study is to understand combustion phenomena according to each air stage mass ratios through CFD. Air flow rates at three inlets are adjusted by dampers inside a burner. Here, injection conditions of liquid fuel are kept constant throughout all simulations. This assumption is made in order to limit the complexity of oil combustion though it may cause some disagreement. In case of cold flows, only longitudinal velocities arc considered, On the other hand, flow, temperature and NOx generations are taken into account for reactive flows. Simple parametric study was conducted by setting 1'st air stage mass ratio as a parameter. And an optimal operation condition was found. The computational study is based on k-e model, P-1 radiation model(WSGGM) and PDF, and is implemented on a commercial code, FLUENT.

  • PDF

구동장치 및 열교환기 변경에 따른 냉매가열식 열펌프의 성능특성 (Performance of a Refrigerant Heating Type Heat Pump by Changing of Driving Devices and Heat Exchangers)

  • 박윤철;김상혁;김지영
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.49-56
    • /
    • 2008
  • When the outdoor air temperature decreased less than the freezing temperature, frost forms at the surface of heat exchangers and it makes the performance degradation of a heat pump system. In this study, a heat pump system has been developed which has a refrigerant heating device as an auxiliarly heating equipment. To reduce power consumptions of the system, a liquid pump, rather than a compressor, was used to drive refrigerant in the heat pump cycle. Ratio of refrigerant mass flow between a refrigerant heating heat exchanger(GHX) and a outdoor plate heat exchanger(PHX) was varied and the system performance was measured and analyzed. As results, when the refrigerant flow rate to the GHX was decreased, the system performance is decreased due to heat absorption capability restriction of the GHX and small variation of the power consumption in the compressor. The effect on the evaporating and condensing pressure by the distribution ratio of the refrigerant to the each heat exchanger is small compare to the effect by the frequency change in the compressor. When the compressor was replaced by the liquid pump, the capacity of the system decreased a little, however the power consumption decrease approximately 80% compare with the power used in the compressor.

액주형 이류체노즐의 반경반향 분무특성에 관한 연구 (A Study on the Radial Spray Performance of a Plaint-Jet Twin-Fluid Nozzle)

  • 최진철;노병준;강신재
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.662-669
    • /
    • 1994
  • In the combustion system, the optimum spray conditions reduce the pollutant emission of exhaust gas and enhance the fuel efficiency. The spray characteristics-the drop size, the drop velocity, the number density and the mass flux, become increasingly important in the design of combustor and in testifying numerical simulation of spray flow in the combustor. The purposes of this study are to clarify the spray characteristics of twin-fluid nozzle and to offer the data for combustor design and the numerical simulation of a spray flow. Spatial drop diameter was measured by immersion sampling method. The mean diameter, size distribution and uniformity of drop were analyzed with variations of air/liquid mass flow ratio. The results show that the SMD increases with the liquid supply flow rate and decreases with the air supply velocity. The radial distribution of SMD shows the larger drops can diffuse farther to the boundary of spray. And the drop size range is found to be wider close to the spray boundary where the maximum SMD locates.

액체로켓 핀틀 인젝터의 분사조건이 미립화 성능에 미치는 영향 (Injection Condition Effects of a Pintle Injector for Liquid Rocket Engines on Atomization Performances)

  • 손민;유기정;구자예;권오채;김정수
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.114-120
    • /
    • 2015
  • Effects of injection conditions on a pintle injector which is proper to recent liquid rocket engines requiring low cost, low weight, high efficiency and reusability were studied. The pintle injector with a typical moving pintle was used for atmospheric experiment using water and air. Injection pressures of water were considered 0.5 and 1.0 bar, 0.1 to 1.0 bar for injection pressures of air and 0.2 to 1.0 mm for pintle opening distance. Sauter mean diameters (SMD) of spray was measured at 50 mm distance from a pintle tip and SMD was treated as a representative parameter in this study. As a result, because of shape characteristics of the pintle injector, there was a transient region between the pintle opening distances of 0.6 and 0.7 mm and this region affected to mass flow rates and SMDs. Also, Reynolds numbers for gas, Weber numbers and momentum ratios were adopted as major non-dimensional paramters and the momentum ratio has strong correlation with SMD.