• Title/Summary/Keyword: Agrobacterium method

Search Result 128, Processing Time 0.022 seconds

Molecular Modification of Perilla Lipid Composition

  • Hwang, Young-Soo;Kim, Kyung-Hwan;Hwang, Seon-Kap;Lee, Sun-Hwa;Lee, Seong-Kon;Kim, Jung-Bong;Park, Sang-Bong;Tom Okita;Kim, Donghern
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.20-30
    • /
    • 1999
  • In order to modify lipid production of Perilla qualitatively as well as quantitatively by genetic engineering, genes involved in carbon metabolism were isolated and characterized. These include acyl-ACP thioesterases from Perilla frutescens and Iris sp., four different $\beta$-ketoacyl- ACP synthases from Perilla frutescens, and two $\Delta$15 a-cyl-ACP desaturases(Pffad7, pffad3). Δ15 acyl-ACP desa turase (Δ15-DES) is responsible for the conversion of linoleic acid (18:2) to $\alpha$-linolenic acid (ALA, 18:3). pffad 3 encodes Δ15 acyl-desaturase which is localized in ER membrane. On the other hand, Pffad7 encodes a 50 kD plastid protein (438 residues), which showed highest sequence similarity to Sesamum indicum fad7 protein. Northern blot analysis revealed that the Pffad7 is highly expressed in leaves but not in roots and seeds. And Pffad3 is expressed throughout the seed developmental stage except very early and fully mature stage. We constructed Pffad7 gene under 355 promoter and Pffad3 gene under seed specific vicillin promoter. Using Pffad7 construct, Perilla, an oil seed crop in Korea, was transformed by Agrobacterium leaf disc method. $\alpha$-linolenic acid contents increased in leaves but decreased in seeds of transgenic Perilla. Currently, we are transforming Perilla with Pffad3 construct to change Perilla seed oil composition. We isolated three ADP-glucose pyrophosphorylase (AGP) genes from Perilla immature seed specific cDNA library. Nucleotide sequence analysis showed that two of three AGP (Psagpl, Psagp2) genes encode AGP small subunit polypeptides and the remaining (Plagp) encodes an AGP large subunit. PSAGPs, AGP small subunit peptide, form active heterotetramers with potato AGP large subunit in E. coli expressing plant AGP genes.

  • PDF

Transient Expression of β-gulucuronidase (GUS) gene in Immature Ovules and Calli Derived from Cottonwood Species (Populus deltoides) by Microprojectile Bombardment (포플러의 미성숙(未成熟) 배(胚)와 캘러스에서 유전자총(遺傳子銃)에 의(依)한 GUS-gene의 일시적(一時的) 발현(發現))

  • Kang, Hoduck;Kang, Sang-Gu;Bae, Hanhong;Park, Kyo-Soo;Hall, Richard B.
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.261-269
    • /
    • 1997
  • Excised immature ovules and calli derived from the stems of cottonwood were bombarded with microprojectiles carrying plasmid DNA containing CaMV-35S promoter and ${\beta}$-glucuronidase(GUS) gene. After bombarded, the expression of GUS gene was detected by the assay of 5-bromo-4-chloro-3-indolyl-${\beta}$-gluconide(X-gluc). Transient gene expression was measured by counting the number of distinct regions of GUS activity per explant. As major parameters, the number of shots and the period of exposure to X-gluc after the bombardment were investigated for detecting GUS gene expression. In this experiment, the percents of GUS gene expression showing spots were 56.8 from immature ovules and 75.9 from micro-calli of cottonwood species. Among the treatments, two consecutive shots and 48 hour exposure produced about $25.75{\pm}2.77$(per ovule), $11.43{\pm}1.22$(per mini petridish) spots, respectively, Microprojectile particle bombardment provides a useful method to assay transient expression in both types of explants. Furthermore, our results represent that the excised ovule and/or the calli might be stably transformed by the biolistics.

  • PDF

Molecular Characterization and Event-Specific Marker Development of Insect Resistant Chinese Cabbage for Environmental Risk Assessment (환경위해성 평가를 위한 해충저항성 배추의 분자생물학적 특성 검정 및 계통 특이 마커 캐발)

  • Lim, Sun-Hyung;Kim, Na-Young;Lee, Si-Myung;Woo, Hee-Jong;Shin, Kong-Sik;Jin, Yong-Moon;Cho, Hyun-Suk
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.347-354
    • /
    • 2007
  • Commercialization of genetically modified (GM) plants will be required the assessment of risks associated with the release of GM plants that should include a detailed risk assessment of their impacts in human health and the environment. Prior to GM plant release, applicants should provide the information on GM crops for approval. We carried out this study to provide the molecular data for risk assessment of the GM Chinese cabbage plants with insect-resistance gene, modified CryIAc, which we obtained by Agrobacterium-transformation. From the molecular analysis with GM Chinese cabbage, we confirmed the transgene copy number and stability, the expression of the transgene, and integration region sequences between the transgene and the Chinese cabbage genome. Based on the unique integration DNA sequences, we designed specific primer set to detect GM Chinese cabbage and set up the GM cabbage detection method by qualitative PCR analysis. Qualitative analysis with GM Chinese cabbage progenies analysis was revealed the same as the result of herbicide treatment. Our results provided the molecular data for risk assessment analysis of GM Chinese cabbage and demonstrated that the primer set proposed could be useful to detect GM Chinese cabbage.

Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans

  • Kim, Kil Hyun;Lim, Seungmo;Kang, Yang Jae;Yoon, Min Young;Nam, Moon;Jun, Tae Hwan;Seo, Min-Jung;Baek, Seong-Bum;Lee, Jeom-Ho;Moon, Jung-Kyung;Lee, Suk-Ha;Lee, Su-Heon;Lim, Hyoun-Sub;Moon, Jae Sun;Park, Chang-Hwan
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.112-122
    • /
    • 2016
  • Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately $27^{\circ}C$ following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density $(OD)_{600}$ of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.

Selection of Resistant Rootstock and Development of Overwintering Methods for Control of Crown Gall Disease on Grapevine (거봉의 뿌리혹병 방제를 위한 저항성 대목 선발 및 월동법)

  • Kang, Sung-Su;Park, Sang-Heon;Park, Mun-Kyun;Park, Tae-Jin;Kang, Hee-Wan;Choi, Jae-Eul
    • Research in Plant Disease
    • /
    • v.13 no.2
    • /
    • pp.98-103
    • /
    • 2007
  • Grapevines will experience various types of winter damage. Some winter damages are caused by mechanical injury, freezing temperatures or poor vine vigor. This research was conducted to find out the appropriate control methods through selection of resistant rootstocks and improvement of overwintering methods for the control of crown gall disease on 'Kyoho' grape. The crown gall symptoms were not found when three stock plants of grapevine SO4, 5BB and 3306 were inoculated with $10^4cfu/ml$ of Agrobacterium vitis strains (YK2823, YK3312, LMG259, HKA234). But when they were inoculated with higher concentration $(10^6 cfu/ml)$ of A. vitis, irrespective of stocks plants, crown galls were formed all of them and the gall size was much smaller than that of kyoho. Three stock plants were selected as resistant based on above mentioned. Covering trunks and branches with rice straw and insulating coverlet was the most effective method for prevention of crown gall disease. This treatment minimized the ambient temperature changes on grapevine trees during winter season to $9.6^{\circ}C$ and the normal plant growth was due to the absence of freezing injury.

Characteristics of Agronomy Traits to Transgenic Rice Selected by Molecular Breeding Method (분자육종기법에 의해 선발된 형질전환 벼 계통의 작물학적 특성)

  • Lee, Hyun-Suk;Kang, Hyun-Goo;Park, Young-Hie;Jung, Hee-Young;Kim, Chang-Kil;Han, Jeung-Sul;Sohn, Jae-Keun;Kim, Kyung-Min;Park, Gyu-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.21 no.5
    • /
    • pp.388-394
    • /
    • 2008
  • This study was carried out to develop new cultivars using the $T_5$ generation of transformed rice by PCR analysis with DNA marker in each generation $(from\;T_3\;to\;T_5)$. In the previous study, we successfully developed the transgenic rice plants over-expressing the Arabidopsis $H^+/Ca^{2+}$ antiporter CAX 1 (accession no. U57411) gene. The calcium concentration in brown rice of transgenic plants was higher than that of donor plants, Iipum, and was selected 3 lines out of 25 lines at cultured GMO field. The major agronomic traits such as culm length, panicle length and panicle number of 3 lines at transgenic plants $(T_5)$ were similar to wild type. Also these lines appeared to have disease resistance to rice blast, cold resistance as compared with donor types. The grain shape was similar to donor plant, however, the 1000 grain weight of brown rice was different from transgenic plants. These finding would be used for basic data of new variety registration.

Establishment of Early Verification Method for Introduction of the Binary Trans-activation System in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) (배추 작물에 이원적 전사유도 시스템 도입을 위한 조기 검증방법 확립)

  • Kim, Soo-Yun;Yu, Hee-Ju;Kim, Jeong-Ho;Cho, Myeong-Cheoul;Park, Mehea
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.95-102
    • /
    • 2013
  • Binary trans-activation (pOp/LhG4) system is one of the regulatory systems of transgene expression. The target gene expression is achieved by crossing the reporter plants with an activator in this system. In this study, we used the features of this system in Chinese cabbage as a way to protect genetic resources and new varieties. To establish pOp/LhG4 system in Chinese cabbage, we designed an activator (35SLhG41300), and reporter constructs (pOpGUSBart) and co-transformed using Agrobacterium. The transgenic plants were selected by antibiotics and the functional activity of pOp/LhG4 system was confirmed by GUS expression. To induce the tissue-specific function, we constructed pOp/LhG4 system (795LhGBart) using female tissue specific promoter (ProAt1g26795) of Arabidopsis. Co-transformed transgenic plants clearly showed tissue specific expression in Arabidopsis. The results suggest the possibility of the system's application of $F_1$ generation can be restricted by expressing the target gene to protect a new variety and genetic resource in Chinese cabbages.

Transformation of Bottle Gourd Rootstock (Lagenaria siceraria Standl.) using GFP gene (GFP유전자를 이용한 대목용 박 형질전환)

  • Lim, Mi-Young;Park, Sang-Mi;Kwon, Jung-Hee;Han, Sang-Lyul;Shin, Yoon-Sup;Han, Jeung-Sul;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.33-37
    • /
    • 2006
  • Bottle gourd (Lagenaria siceraria Standl.) has been used as a rootstock for the watermelon cultivation because of better growth ability at low temperature and avoidance from contamination of the soil disease. Since the genetic source for the elite rootstock is limited in nature, the genetic engineering method is inevitable to develop new lines especially to obtain the functionally important or multi-disease resistant bottle gourd. Recently, our lab has set up a successful system to transform the bottle gourd. in order to monitor the transformation process, GFP gene is used. Cotyledons of the inbred line 9005, 9006 and G5 were used to induce the shoot under the selection media with MS + 30 g/L sucrose + 3.0 mg/L BAP + 100 mg/L kanamycin + 500 mg/L cefotaxime + 0.5 mg/L $AgNO_3$, pH 5.8. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. The shoot was incubated in the rooting media with 1/2 MS + 30 g/L sucrose + 0.1 mg/L IAA + 50 mg/L kanamycin + 500 mg/L cefotaxime, pH 5.8 and moved to pot for acclimation. Although the shoot development rate was depended on the genotype, the G5 was the best line to be transformed. Monitoring GFP expression from the young shoot under microscope could make the selection much easier to distinguish the transformed shoot from the non-transformed shoots.