DOI QR코드

DOI QR Code

Establishment of Early Verification Method for Introduction of the Binary Trans-activation System in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis)

배추 작물에 이원적 전사유도 시스템 도입을 위한 조기 검증방법 확립

  • Kim, Soo-Yun (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Yu, Hee-Ju (Department of Life Sciences, The Catholic University of Korea) ;
  • Kim, Jeong-Ho (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Cho, Myeong-Cheoul (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Park, Mehea (Vegetable Research Division, National Institute of Horticultural & Herbal Science)
  • 김수윤 (국립원예특작과학원 채소과) ;
  • 유희주 (가톨릭대학교 생명과학과) ;
  • 김정호 (국립원예특작과학원 채소과) ;
  • 조명철 (국립원예특작과학원 채소과) ;
  • 박미희 (국립원예특작과학원 채소과)
  • Received : 2012.03.21
  • Accepted : 2012.09.25
  • Published : 2013.02.28

Abstract

Binary trans-activation (pOp/LhG4) system is one of the regulatory systems of transgene expression. The target gene expression is achieved by crossing the reporter plants with an activator in this system. In this study, we used the features of this system in Chinese cabbage as a way to protect genetic resources and new varieties. To establish pOp/LhG4 system in Chinese cabbage, we designed an activator (35SLhG41300), and reporter constructs (pOpGUSBart) and co-transformed using Agrobacterium. The transgenic plants were selected by antibiotics and the functional activity of pOp/LhG4 system was confirmed by GUS expression. To induce the tissue-specific function, we constructed pOp/LhG4 system (795LhGBart) using female tissue specific promoter (ProAt1g26795) of Arabidopsis. Co-transformed transgenic plants clearly showed tissue specific expression in Arabidopsis. The results suggest the possibility of the system's application of $F_1$ generation can be restricted by expressing the target gene to protect a new variety and genetic resource in Chinese cabbages.

이원적 전사유도 시스템(binary trans-activation system)은 도입유전자의 발현을 조절하는 기작(mechanism) 중에 하나로, 목적 유전자의 발현이 전사활성 인자를 가지고 있는 식물체와의 교배를 통해서만 발현되는 시스템이다. 본 연구에서는 이원적 전사유도 시스템을 원예 작물의 우수한 유전자원 및 신품종 보호 방법으로 이용하고자, 배추에서 이 시스템의 기능을 검정하였다. 배추작물에서 이원적 전사유도 시스템의 이용가능성을 검정하기 위하여 activator construct(35SLhGBart)와 reporter construct(pOpGUS1300)를 작성하였고 공동형질전환방법으로 배추에 형질전환하였다. 두 종류의 카세트가 도입된 형질전환체는 항생제를 이용하여 선발하였으며, 재분화된 신초의 GUS 유전자 발현으로 이 시스템의 활성을 확인하였다. 또한 이 시스템을 조직 특이적으로 유도하기 위하여 애기장대의 자성 배우체 특이적 프로모터를 이용하여 activator construct(795LhGBart)를 작성하여 애기장대에 형질전환 하였다. 공동형질전환된 애기장대는 자성 배우체에서 조직 특이적인 발현을 나타냈다. 이러한 결과는 이원적 전사유도 시스템이 목적유전자의 발현을 배추의 $F_1$ 종자에서 선택적으로 유도하는 방법으로써 우수한 유전자원 및 신품종 보호에 이용될 수 있다는 것을 보여주는 것이라고 생각된다.

Keywords

References

  1. Baroux, C., R. Blanvillain, and P. Gallois. 2001. Paternally inherited transgenes are down-regulated but retain low activity during early embryogenesis in Arabidopsis. FEBS Lett. 509:11-16. https://doi.org/10.1016/S0014-5793(01)03097-6
  2. Block, M.D., D. Debrouwer, and T. Moens. 1997. The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor. Appl. Genet. 95:125-131. https://doi.org/10.1007/s001220050540
  3. Drews, G.N. and R. Yadegari. 2002. Development and function of the angiosperm female gametophyte. Annu. Rev. Genet. 36:99-124. https://doi.org/10.1146/annurev.genet.36.040102.131941
  4. Dutt, M., Z.T. Li, S.A. Dhekney, and D.J. Gray. 2008. A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci. 175:423-430. https://doi.org/10.1016/j.plantsci.2008.06.014
  5. Gleave, A.P. 1992. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20: 1203-1207 https://doi.org/10.1007/BF00028910
  6. Goldberg, R.B., T.P. Beals, and P.M. Sanders. 1993. Anther development: Basic principles and practical applications. Plant Cell 5:1217-1229. https://doi.org/10.1105/tpc.5.10.1217
  7. Gowik, U., J. Burscheidt, M. Akyildiz, U. Schlue, M. Koczor, M. Streubel, and P, Westhoff. 2004. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16:1077-1090. https://doi.org/10.1105/tpc.019729
  8. Jefferson, R.A., T.A. Kavanagh, and M.W. Bevan. 1987. GUS fusions: $\beta$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Plant Cell Physiol. 6:3901-3907.
  9. Kang, B.K. and Y.D. Park. 2001. Effect of antibiotics and herbicide on Shoot regeneration from cotyledon and hypocotyl explants of Chinese cabbage. Kor. J. Hort. Sci. Technol. 19:17-21.
  10. Kim, K.H., J.E. Lee, S.H. Ha, B.S. Hahn, J.S. Park, M.H. Lee, C.S. Jung, and Y.H. Kim. 2008. Perilla transformation using selection markers containing antibiotics and basta. J. Plant Biotechnol. 35:299-306. https://doi.org/10.5010/JPB.2008.35.4.299
  11. Kim, S.Y., J.S. Kim, J.A. Kim, B.S. Park, J.K. Hong, Y.D. Part, and Y.H. Lee. 2011. Induction of Brassica rapa transgenic plant line showing delayed bolting time using over expression of BrFLC genes. Korean J. Intl. Agri. 23:218-225.
  12. Koltunow, A.M., J. Truettner, K.H. Cox, M. Wallroth, and R.B. Goldberg. 1990. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201-1224. https://doi.org/10.1105/tpc.2.12.1201
  13. Komari, T., Y. Hiei, Y. Saito, N. Murai, and T. Kumashiro. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10:165-174. https://doi.org/10.1046/j.1365-313X.1996.10010165.x
  14. Korean Seed Association. 2011. Current extent of vegetable seed's exports in 2011. http://www.kosaseed.or.kr/html/mu4_sub02_view.asp?bbs_num=1222.
  15. Lee Y.H., S.B. Lee, S.C. Suh, M.O. Byun, and H.I. Kim. 2000. Herbicide-resistant cabbage (Brassica oleracea ssp. capitata) plants by Agrobacterium-meidated transformation. J. Plant Biotechnol. 2:35-41.
  16. Lee Y.H., K.H. Chung, H.U. Kim, Y.M. Jin, H.I. Kim, and B.S. Park. 2003. Induction of male sterile cabbage using a tapetum-specific promoter from Brassica campestris L. ssp. pekinensis. Plant Cell Rep. 22:268-273. https://doi.org/10.1007/s00299-003-0688-4
  17. Lexa, M,, T. Genkov, J. Malbeck, I. Machackova, and B. Brzobohaty. 2003. Dynamics of endogenous cytokinin pools in tobacco seedlings: A modeling approach. Ann Bot. 91: 585-597. https://doi.org/10.1093/aob/mcg061
  18. McCormac, A.C., M.R. Fowler, D.F. Chen, and M.C. Elliott. 2001. Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res. 10:143-155. https://doi.org/10.1023/A:1008909203852
  19. Mariani, C., M.D. Beuckeleer, J. Truettner, J. Leemans, and R.B. Goldberg. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737-741. https://doi.org/10.1038/347737a0
  20. Meinke, D.W. 1994. Seed development in Arabidopsis, p. 253-295. In: E.M. Meyerowitz and C.R. Somerville (eds.). Arabidopsis. Cold Spring Harbor Laboratory Press, N.Y.
  21. Moore, I., L. Galweiler, D. Grosskopf, J. Schell, and K. Palme. 1998. A transcription activation system for regulated gene expression in transgenic plants. Proc. Natl. Acad. Sci. 95:376-381. https://doi.org/10.1073/pnas.95.1.376
  22. Moore, I., M. Samalova, and S. Kurup. 2006. Transactivated and chemically inducible gene expression in plants. Plant J. 45:651-83. https://doi.org/10.1111/j.1365-313X.2006.02660.x
  23. Park, J., Y.K. Lee, B.K. Kang, and W.I. Chung. 2004. Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants. Theor. Appl. Genet. 109:1562-1567. https://doi.org/10.1007/s00122-004-1790-x
  24. Raz, V. and J. Ecker. 1997. Analyzing DNA: A laboratory manual. Cold Spring Harbor, New York.
  25. Rogers, H.J., N. Bate, J. Combe, J. Sullivan, J. Sweetman, C. Swan, D.M. Lonsdale, and D. Twell. 2001. Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol. 45:577-585. https://doi.org/10.1023/A:1010695226241
  26. Sambrook. J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, N.Y.
  27. Segal, G., R. Song, and J. Messing. 2003. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387-397.
  28. Sreeramanan, S., M. Maziah, N.M. Rosli, M. Sariah, and R. Xavier. 2006. Particle bombardment-mediated co-transformation of chitinase and $\beta$-1, 3 glucanase genes in Banana. Biotechnology 5:203-216. https://doi.org/10.3923/biotech.2006.203.216
  29. Yamamoto, Y.T., C.G. Taylor, G.N. Acedo, C.L. Cheng, and M.A. Conkling. 1991. Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 3:371-382. https://doi.org/10.1105/tpc.3.4.371
  30. Yu, H.J., P. Hogan, and V. Sundaresan. 2005. Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol. 139:1853-1869. https://doi.org/10.1104/pp.105.067314