• Title/Summary/Keyword: Agro-environmental effect

Search Result 64, Processing Time 0.031 seconds

Effects of Aqueous Azadirachta indica Extract on Hepatotoxicity in Rats (수용성 님추출물이 랫드의 간 독성에 미치는 영향)

  • Park, Kyung-Hun;Yoon, Hyunjoo;Han, Beom Seok;Lee, Je-Bong;Jeong, Mi Hye;Cho, Namjun;Om, Ae Son;Paik, Min-Kyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.395-402
    • /
    • 2014
  • BACKGROUND: Azadirachta indica Extract(AIE) containing azadirachtin as active ingredient have been used worldwide as environment-friendly organic material having pest control properties. However, the extracts prepared with different solvent and from different plant site is very diverse and have different toxicity. METHODS AND RESULTS: In this study, the four week repeated oral dose toxicity test of aqueous AIE in Sprague-Dawley rats was carried out to investigate the toxic effect of liver, main toxicity target organ of AIE. The male and female rats were divided into 4 groups, respectively; control(0 g/Kg bw), low-dose group(0.5 g/Kg bw), middle-dose(1.0 g/Kg bw) and high-dose group(2.0 g/Kg bw). As a results, relative liver weight increased with dose-dependent of AIE(p<0.05). Serum LDH in all AIE-treated groups were significantly lower than the control in male rats(p<0.05). However, serum GOT and GPT were significantly increased in all male AIE-treated groups in male rats(p<0.05) and, in particular, increase of serum GPT in dose-dependent manner raise the possibility of liver damage. Even through serum GLU was increased significantly in high-dose group in male rats compared to control, there were no significant differences of urinary GLU among all groups(p<0.05). In addition, histopathological examination of the liver did not reveal any lesions in all AIE-treated groups. CONCLUSION: In conclusion, 4 weeks of the repeated oral administration of AIE 2.0 g/Kg to rats has resulted no toxic response in liver. Therefore, AIE was no indicated to have any toxic effect in the SD rats, when it was orally administrated below the dosage 2.0 g/Kg/day for 4weeks.

A 90-Day Repeated Oral Dose Toxicity Study of Alismatis Rhizoma Aqueous Extract in Rats

  • Lee, Mu-Jin;Jung, Ho-Kyung;Lee, Ki-Ho;Jang, Ji-Hun;Sim, Mi-Ok;Seong, Tea-Gyeong;Ahn, Byung-Kwan;Shon, Jin-Han;Ham, Seong-Ho;Cho, Hyun-Woo;Kim, Yong-Min;Park, Sung-Jin;Yoon, Ji-Young;Ko, Je-Won;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.191-200
    • /
    • 2019
  • Alismatis rhizoma (AR), the dried rhizome of Alisma orientale (Sam.) Juzep, is a well-known, traditional medicine that is used for the various biological activities including as a diuretic, to lower cholesterol and as an anti-inflammatory agent. The present study was carried out to investigate the potential toxicity of the Alismatis rhizoma aqueous extract (ARAE) following 90-day repeated oral administration to Sprague-Dawley rats. ARAE was administered orally to male and female rats for 90 days at 0 (control), 500, 1,000 and 2,000 mg/kg/day (n = 10 for male and female rats for each dose). Additional recovery groups from the control group and high dose group were observed for a 28-day recovery period. Chromatograms of ARAE detected main compounds with four peaks. Treatment-related effects including an increase in the red blood cells, hemoglobin, hematocrit, albumin, total protein, and urine volume were observed in males of the 2,000 mg/kg/day group (p < 0.05). However, the diuretic effect of ARAE was considered, a major cause of hematological and serum biochemical changes. The oral no-observed-adverse-effect level (NOAEL) of the ARAE was > 2,000 mg/kg/day in both genders, and no target organs were identified.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

A Case Study Stormwater Treatment by Channel-Type Wetland Constructed on the Flood Plane of the Stream (하천 고수부지에 설치한 수로형 인공습지에 의한 강우 유출수 처리에 관한 연구)

  • Kim, Piljoo;Han, Euilyung;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.80-89
    • /
    • 2017
  • Researches about NPS(Non-point Pollution Source) reduction have been widely carried out in recent years. A pilot channel-type constructed wetland (wet swale) was constructed in Rongyin area to treat stormwater generated from a green house agro-land of 22.7 ha. From 2006 to 2008, monitoring was conducted to evaluate its performance on the removal effect for organic pollutants as well as nutrients. Totally, sampling trips of 17 rainfall events were made and they covered most types of storm events in Korea. The channel-type constructed wetland have average removal efficiencies of 78.3~92.0%, 56.4~66.1%, 28.2~45.5% and 50.6~66.4% for SS, COD, TN and TP, respectively. According to four methods for estimating the removal efficiency, the average efficiencies of TSS, COD, TN and TP are 86.0%, 60.1%, 30.1% and 53.5%, respectively. From 2006 to 2008, annual efficiency improved due to infiltration potential increase. It was found that most of the pollutants removed in this channel type of wetland was particulate solids bound pollutants, which is assumed fact that it lacks of physico-chemical treatment conditions which are commonly observed in the retention type of constructed wetlands.

Colors and Sizes of Insect Screen Net Influence Physical Control of Bemisia tabaci and Frankliniella occidentalis under Controlled Environments (환경제어 조건에서 방충망 색과 크기가 담배가루이 및 꽃노랑총채벌레의 물리적 방제에 미치는 영향)

  • Jung, Chung-Ryul;Yoon, Jung-Beom;Kim, Kwang-Ho;Lee, Guang-Jae;Heo, Jeong-Wook;Kim, Hyun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.46-54
    • /
    • 2016
  • BACKGROUND: The tobacco whitefly(Bemisia tabaci Gennadius) and western flower thrips(Frankliniella occidentalis Pergande) seriously damaged to several greenhouse crops and transmitted plant viruses such as the Tomato Yellow Leaf Curl Virus(TYLCV) and Tomato Spotted Wilt Virus(TSWV). Objective of this study was to elucidate exclusion effects of insect screen nets by various hole sizes and colors for control of the two insect pests in controlled environments such as a closed plant production system.METHODS AND RESULTS: The exclusion effects to various hole sizes of three other colors with 30 individuals of two insect pests was evaluated. B. tabaci was not showed not difference to different colors and sizes. F. occidentalis showed that 0.2 mm black screen was the most effective exclusion than other colors of 0.6 and 0.8 mm.CONCLUSION: The two insects were different reponses to various hole sizes of white and other color screen nets. It was proved that the 0.4 mm white screen net used in this experimental condition was suitable for exclusion of B. tabaci and 0.2 mm black forF. occidentalis.

Cultural and chemical approaches for controlling postharvest diseases of garlics (마늘 저장병 방제를 위한 경종적, 화학적 접근)

  • Kim, Yong-Ki;Lee, Sang-Bum;Lee, Sang-Seob;Shim, Hong-Sik;Choi, Inn-Hoo
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.2
    • /
    • pp.139-148
    • /
    • 2003
  • The purpose of this study was to investigate damages of garlics occurred under cold storage and farmhouse storage condition, influence of cultural and environmental factors on storage spoilage of garlics, and to establish control strategies to reduce damages occurred under storage of garlics. Decays of garlics were highly related with cultural condition (paddy field or upland soil), ventilation, storage temperature and relative humidity, continuous cropping years, and harvesting stage. Early-harvested garlics were more decayed than late-harvested garlics. Garlics cultivated on paddy field were less decayed than ones cultivated on upland soil under farmhouse storage condition. The densities of Penicillium spp. and Fusarium spp. were higher on plot with long term continuous cropping cultivation history than on plot with short term continuous cropping cultivation history. However there is no relation between continuous cropping years and percent of decay of garlics. As a result of investigating influence of environmental factors on decay of garlics, P. hirsutum caused severe spoilage under high relative humidity condition, while F. oxysporum and Stemphyllium botryosum were not related with relative humidity. The three postharvest pathogens grew well above woe. In addition when P. hirsutum and S. botryosum were cultured for two months, they grew even at $-1^{\circ}C$. Except for environmental factors, wounds occurred through farming works. had an effect on storage spoilage of garlics. Garlics only hurt with a toothpick without inoculation of pathogens were decayed more severe than those inoculated with pathogens without wounds. Seven agro-chemicals showed highly suppressive effect were selected by measuring mycelial growth of three major pathogens of garlics on potato dextrose agar amended with 0.1% (v/v) of each fungicide. When they were foliar-sprayed on garlics 30 days before harvesting, it was confirmed that they suppressed storage spoilage of garlics. Also when garlics were sprayed with and drenched into the suspension of Benoram WP very after harvesting garlics, garlic damages by postharvest pathogens were reduced remarkably.

Herbicidal Effects and Crop Selectivity of Sorgoleone, a Sorghum Root Exudate under Greenhouse and Field Conditions (온실과 포장조건에서 수수 추출물 Sorgoleone의 제초활성 및 작물 선택성)

  • Uddin, Md. Romij;Won, Ok-Jae;Pyon, Jong-Yeong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.412-420
    • /
    • 2010
  • Weeds are known to cause enormous losses due to their interference in agro ecosystems. Because of environmental and human health concerns, worldwide efforts are being made to reduce the heavy reliance on synthetic herbicides that are used to control weeds. In this regard phytotoxicity of allelochemical sorgoleone, which is a major component of the hydrophobic root exudates of Sorghum bicolor was evaluated in different weed species and also its crop selectivity in greenhouse and field conditions. Sorgoleone strongly inhibited the growth of different weeds by pre-emergence and post-emergence applications both in greenhouse and field conditions. Post-emergence application of sorgoleone on 21-day-old weed seedlings had a greater inhibitory effect than the pre-emergence application. Again, broadleaf weed species were more susceptible than grass species to the application of sorgoleone at both stages of growth. Growth of broadleaf weed species was suppressed by greater than 80% for most of the weed species except a few species and among them the species Rumex japonicus and Galium spurium were completely suppressed at $200{\mu}g\;ml^{-1}$ sorgoleone. Like greenhouse trial, sorgoleone was more effective for broadleaf weed species followed by sedge and grass weed species in the field condition. The growth inhibition of weeds was slightly lower in field condition compared to greenhouse condition. The crop species like rice, barley, wheat, corn, perilla, tomato, soybean and Chinese cabbage were tolerant to sorgoleone while lettuce and cucumber were slightly susceptible to sorgoleone. Consequently, sorgoleone may be applied to control weeds in organic farms without affecting the growth of crop.

Effects of Special Protection Area Designation on Soil Properties and Vegetation Coverage of Degraded Trails (국립공원 특별보호구 지정이 훼손 탐방로 주변 토양과 식생피도에 미치는 영향)

  • Kim, Dong-Hwan;Lee, Dong-Ho;Kim, Hyun Seok;Kim, Seong-il
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.352-359
    • /
    • 2015
  • This study was conducted to evaluate how the special protection area designations of degraded trails effect on the soil and vegetation recovery of degraded trails. The study areas were established on an opened trail and a 16-year closed trail, which was prohibited to enter after the designation as a special protection area for recovery, at Bukhansan National Park. Soil core sampling and measurements of vegetation cover were performed to compare soil and vegetation properties of the trails. Soil bulk density increased and soil water total nitrogen decreased on the opened trail, while no significant differences were found on bulk density, soil water, total nitrogen, acidity, and organic matter on the closed trail. On the opened trail, vegetation cover was seemed to be degraded, because vegetation litter cover ratio was low and barren rock cover ratio was high. On the closed trail, litter rock barren cover ratio of the closed trail was recovered, but only limited recovery was found on vegetation cover by applying environmental damage condition rating class. In conclusion, the closed trail was recovered by designation of special protection area, while difference in recovery progress of soil and vegetation was found. Therefore, designation of special protection area of degraded area should be based on scientific basis of recovery characteristics of the area. In order to improve the effectiveness of special protection area system, further specific standards for special protection area designation and management would be needed, considering ecological and social importance of target areas.

A New Frontier for Biological Control against Plant Pathogenic Nematodes and Insect Pests I: By Microbes (식물병원성 해충과 선충 방제의 새지평 I: 미생물)

  • Lee, Hae-Ran;Jung, Jihye;Riu, Myoungjoo;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.114-149
    • /
    • 2017
  • World-wide crop loss caused by insect pest and nematode reaches critical level. In Korea, similar crop loss has been gradually augmented in the field and greenhouse due to continuous crop rotation. The current methods on controlling herbivorous insects and plant parasitic nematodes are mostly depended on agro-chemicals that have resulted additional side-effect including occurrence of resistant insects and nematodes, environmental contamination, and accumulation in human body. To overcome the pitfalls, microbe-based control method have been introduced and applied for several decades. Here, we revised biological control using by the bacteria, fungi, and virus in order to kill insect and nematode and to attenuate its virulence mechanism. The introduced microbes mainly secreted out the hydrolysing enzymes and toxic compounds to target host membrane or cell wall directly. Indirectly, the microbe-triggered plant innate immunity against insects and nematodes was also reported. In conclusion, we provide a new frontier of microbe-based environmentally friendly procedure and effective methods to manage insects and nematodes.

Seasonal Trend of Elevation Effect on Daily Air Temperature in Korea (일별 국지기온 결정에 미치는 관측지점 표고영향의 계절변동)

  • 윤진일;최재연;안재훈
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.96-104
    • /
    • 2001
  • Usage of ecosystem models has been extended to landscape scales for understanding the effects of environmental factors on natural and agro-ecosystems and for serving as their management decision tools. Accurate prediction of spatial variation in daily temperature is required for most ecosystem models to be applied to landscape scales. There are relatively few empirical evaluations of landscape-scale temperature prediction techniques in mountainous terrain such as Korean Peninsula. We derived a periodic function of seasonal lapse rate fluctuation from analysis of elevation effects on daily temperatures. Observed daily maximum and minimum temperature data at 63 standard stations in 1999 were regressed to the latitude, longitude, distance from the nearest coastline and altitude of the stations, and the optimum models with $r^2$ of 0.65 and above were selected. Partial regression coefficients for the altitude variable were plotted against day of year, and a numerical formula was determined for simulating the seasonal trend of daily lapse rate, i.e., partial regression coefficients. The formula in conjunction with an inverse distance weighted interpolation scheme was applied to predict daily temperatures at 267 sites, where observation data are available, on randomly selected dates for winter, spring and summer in 2000. The estimation errors were smaller and more consistent than the inverse distance weighting plus mean annual lapse rate scheme. We conclude that this method is simple and accurate enough to be used as an operational temperature interpolation scheme at landscape scale in Korea and should be applicable to elsewhere.

  • PDF