• Title/Summary/Keyword: Agriculture Technology Information Service

Search Result 91, Processing Time 0.021 seconds

Awareness of Agricultural Technology Center's Role and Function in Urban and Rural Complex City - Focusing on Comparison of Awareness between Agriculturalist and Nonagriculturalist - (도농복합시 농업기술센터의 역할 및 기능에 대한 인식 연구 - 농업인과 비농업인의 인식 비교를 중심으로 -)

  • Choi, Soo-Ho;Lee, Seung-Hyun;Kang, Eun-Jee;Kim, Young-Geun
    • Journal of Agricultural Extension & Community Development
    • /
    • v.22 no.1
    • /
    • pp.79-92
    • /
    • 2015
  • Agricultural Technology Center is an education center to provide agriculturalists with information and technology related with agriculture. As domestic and international environment of agriculture and rural area is changing, functions and roles of Agricultural Technology Center are evolving according to stream of times. In 1995, a new urban and rural complex city was created for symbiotic relationship between city and rural area, As a result, user group of Agricultural Technology Center expanded to nonagriculturalists. Though the change of agricultural extension service is necessary to perform extended functions of rural area and to satisfy needs of new group of users, it is difficult to find enough studies on new functions and roles of Agricultural Technology Center to manage the service change. Therefore, this study is aimed to suggest new functions and roles of Agricultural Technology Center according to stream of times. This study were surveyed through questionnaire targeting users of Namyangju Agricultural Technology Center to compare user group awareness of Agricultural Technology Center in urban and rural complex city. According to this study result, while main purpose of agriculturalists' visiting at Agricultural Technology Center was participating in education programs related with agriculture. In contrast, nonagriculturalists usually visited the center for agricultural understanding, leisure activities, and children education, participating in field work programs. From the survey result of required functions of the center, it was revealed that nonagriculturalists expected urban agriculture, research for living improvement in rural area, adjustment education for returning farmer, and function of farming promotion, comparing agriculturalists. It is verified that this difference of user group awareness reflects the necessity that Agricultural Technology Center should change services and accept increasing use of nonagriculturalists with new functions and roles.

Information and Communication Management Systems (ICMS) in India -Connecting the Resource Poor Farmers to Knowledge and Institutions

  • Mudda, Suresh K;Ravikumar, NK;Giddi, Chitti B
    • Agribusiness and Information Management
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Information and communication technologies (ICTs) have always mattered in agriculture too. In day-to-day practices of agriculture and allied sectors, the farmers often share their information. Changing weather patterns, soil conditions, pests and diseases always throw challenges to small and marginal farmers. So, the farmer needs up-dated information to cope with and even benefit from these changes. In the developing countries like India, where agriculture still plays a crucial role (over 58% of the rural households depend on agriculture as their livelihood) and the rising population from 1027 million to 1419 million during 2001-16 (a total rise of 38 percent or 1.3 percent per year) pose a lot of pressure on land and other resources to meet the food security needs on one hand and to meet the challenges of globalization on the other. Understanding and addressing these challenges are very crucial, in which ICT can play a major role. With the booming mobile, wireless, and Internet industries, ICT has found a foothold even in poor marginal and smallholder farms and in their activities. The survey conducted among the 120 farmers in Srikakulam district in India revealed that, ICT has revolutionized the agriculture in the modern days. Production and marketing information is accessed by 91% of the sample farmers through mobile in 2015, where it was only 5% in 2005. The extent of use of mobile phones by the farmers varied with the decision to be taken by them like Harvesting, packing, and storing (94%), Selling Decision (91%), Seed purchase (89%), Application of fertilizers and pesticides (88%) and Land preparation and planting (84%), other package of practices (77%). The farmers further opined that, 'Voice' was the dominating source of communication (96%) compared to Short Message Service (SMS) (only 27%) and Internet access (10%), as majority are illiterate. The use of camera (71%), Bluetooth (33%), Radio (61%) TV (41%) are the other means of sharing the information. In this context of importance of ICTs in Indian agriculture, greater attention justifies about the applications of ICT's to alleviate poverty and promote economic growth of the farming population.

A Design of SOA-based Data Integration Framework for Effective Spatial Data Mining (효과적인 공간 데이터 마이닝을 위한 SOA 기반 데이터 통합 프레임워크 설계)

  • Moon, Il-Hwan;Hur, Hwan;Kim, Sam-Keun
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.385-392
    • /
    • 2011
  • Recently, the concern of IT-in-Agriculture convergence technology that combines information technology and agriculture is increasing rapidly. Especially, the crop cultivation related prediction services by spatial data mining (SDM) can play an important role in reducing the damage of natural disaster and enhancing crop productivity. However, the data conversion and integration procedure to acquire the learning dataset of SDM for the prediction service need a lot of effort and time, because of their heterogeneity between distributed data. In addition, calculating spatial neighborhood relationships between spatial and non-spatial data necessitates requires the complicated calculation procedure for large dataset. In this paper, we suggest a SOA-based data integration framework that can effectively integrate distributed heterogeneous data by treating each data source as a service unit and support to find the optimal prediction service by improving productivity of learning dataset for SDM. In our experiment, we confirmed that our framework can be effectively applied to find the optimal prediction service for the frost damage area, by considering the case of peach crop cultivation in Icheon in Korea.

Time of Arrival range Based Wireless Sensor Localization in Precision Agriculture

  • Lee, Sang-Hyun;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.3 no.2
    • /
    • pp.14-17
    • /
    • 2014
  • Precision agriculture relies on information technology, whose precondition is providing real-time and accurate information. It depends on various kinds of advanced sensors, such as environmental temperature and humidity, wind speed, light intensity, and other types of sensors. Currently, it is a hot topic how to collect accurate information, the main raw data for agricultural experts, monitored by these sensors timely. Most existing work in WSNs addresses their fundamental challenges, including power supply, limited memory, processing power and communication bandwidth and focuses entirely on their operating system and networking protocol design and implementation. However, it is not easy to find the self-localization capability of wireless sensor networks. Because of constraints on the cost and size of sensors, energy consumption, implementation environment and the deployment of sensors, most sensors do not know their locations. This paper provides maximum likelihood estimators for sensor location estimation when observations are time-of arrival (TOA) range measurement.

Implementation of Henhouse Monitoring System Based on Ubiquitous Sensor Network (USN 기반의 계사 모니터링 시스템 구축)

  • Park, DongGook;Yoe, Hyun;Rhyu, KyeongTaek;Shin, ChangSun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.9-18
    • /
    • 2009
  • This paper proposes a Ubiquitous Henhouse Monitoring System (UHMS) that can not only monitor henhouse's conditions and raising environments, but also control the henhouse remotely by using sensor network technology. The system consists of three layers. The physical layer connects sensors with facilities. The middleware layer processes and manages data collected from the physical layer. And the application layer provides the user with the user requested services. The system provides a real-time monitoring service, a facility controlling service, an expert service, a consumer safety service, and a mobile message service via interacting with components of each layer. Finally, a henhouse model is defined and the relevant system components and the application GUIs are implemented.

u-IT Based Plant Growth Environment Management System (u-IT 기반의 생장환경 관리 시스템)

  • Cho, Seung-Il;Kim, Jong-Chan;Ban, Kyeong-Jin;Kim, Chee-Yong;Kim, Eung-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.362-364
    • /
    • 2011
  • To build ubiquitous agriculture environment successfully, development of core technology for agriculture, such as sensor node H/W, sensor node middleware platform, routing protocol and agricultural environment application service is essential. With the application of u-IT technologies to traditional agriculture area, fusion complex technologies become a source to raise value-added agriculture product and its productivity. However, it is imperative to expand horticulture industry area and improve infrastructure for utility-based horticulture. This paper proposes an agriculture product growth environment management system that utilizes environmental factor monitoring sensors and biological information sensors in greenhouse to specifically manage botany growth environment management.

  • PDF

Development of Precision Agricultural Machine Education Program (정밀 농업기계 교육프로그램의 발전)

  • Hong, S.J.;Kim, D.E.;Kang, D.H.;Kim, J.J.;Kang, J.G.;Chung, S.O.;Mo, C.Y.;Ryu, D.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2020
  • In Korea, the agricultural machinery market has been generally on the rise, and particularly the demand for the diverse agricultural machine is increasing due to the radical changes in agriculture, such as a high supply of the advanced and automated agricultural machine and an increase in aged or female farmer population. Therefore, this study analyzes the technical trends in the precision agricultural machine domestically and globally to guide the direction of development of the ICT-based machine. The investigation of the precision agricultural machine in this study focuses on the production technology through analyzing the trends in sensor-related technology, the decision-making research, variable treatment technology, and academic publication. The result shows that information processing technology including the sensor and the decision-making requires various measurement factors and the established technologies are continually being developed.

Factors affecting Pig Farmers' Adoption of the HACCP System

  • Jung, Gu-Hyun;Ahn, Kyeong Ah;Kim, Han-Eul;Jo, Hye Bin;Choe, Young-Chan
    • Agribusiness and Information Management
    • /
    • v.3 no.2
    • /
    • pp.43-62
    • /
    • 2011
  • The goal of this study is to determine, based on survey results, the underlying factors that affect the intention of the farmers who have not adopted the Hazard Analysis and Critical Control Points (HACCP) system for the rearing phase of pig production to adopt this system in the future. The research model for this study was con structed based on strategic contingency theory, the theory of the diffusion of innovation, and the technology acceptance model (TAM). Using structural equation modeling with partial least squares (PLS), this study analyzes the effects of the intensity of competition, the environmental uncertainty, the innovativeness and self-efficacy of the individual farmers, and the impact of the credibility of the Agricultural Technology Service Center (ATSC), which acts as the principal agent of technology dissemination and as a leader of change, on the perceived usefulness of technology and the farmers' intention to adopt the system. The results of the analysis are as follows. First, with regard to the underlying factors affecting the intention to adopt the new system, the intensity of competition within the industry and the institutional credibility of the ATSC were inferred to underlie the perceived usefulness. Second, institutional credibility has a positive impact on the perceived usefulness of the system, and the perceived usefulness, in turn, has a positive impact on the intention to adopt. The perceived ease of use also has a positive impact on the intention to adopt. Because the factor that has the biggest impact on the intention of a farm to adopt is the credibility of the ATSC, it is crucial for extension organizations, such as the ATSC, to make greater efforts to promote the expansion of the HACCP system. Because farmers feel that the implementation of the HACCP system is an instrumental strategy for coping with the high intensity of competition within the industry, they attempt to gain a competitive edge through the production of safe livestock products.

  • PDF

An Implementation of the management support service for agricultural environment using Smart Devices (스마트 디바이스 기반의 농업환경관리 지원 서비스)

  • Kang, H.J.;Lee, J.W.;Kang, S.S.
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • With the development of RFID and USN technology, kinds of services are appeared and industrialized to maximize management, maintenance and efficiency of production. In the agricultural field, it is important to increase productivity and quality of food by managing growth environment of plants. In this paper, to apply IT technology to agriculture, we present a mobile service application called WiSEMobile which support growers to monitor and manage the information in the field from remote sites. By using the service with mobile devices, farmers can monitor the change of environment with data from sensor nodes, manage and exchange kinds of data gathered by farmers in the field.

  • PDF