• Title/Summary/Keyword: Agricultural water resources management

Search Result 397, Processing Time 0.027 seconds

The Study of safety management techniques for disaster prevention in Agricultural Reservoir (Hydraulic.hydrological evaluations of safety) (농업용저수지 재해예방 안전관리기법에 관한 연구 (수리.수문학적 안정성 평가 중심으로))

  • Park, Ji-Sung;Kim, Meyong-Won;Park, Byong-Jun;Kim, Kyung-Muk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.708-708
    • /
    • 2012
  • 국내에는 농업용수 공급을 목적으로 축조된 저수지가 2008년 통계연보기준에 따르면 17,649개소가 있으며, 이 중 3,326개소는 한국농어촌공사에서 관리하고, 나머지 14,323개소는 지자체에서 관리하고 있는 것으로 파악되고 있다. 유효저수량으로 보면 공사관리가 24억4천7백만$m^3$, 지자체관리가 3억2천3백만$m^3$으로 각각 88.3%와 11.7%를 관리하고 있는 셈이다. 경상북도와 같은 산이 많은 지방은 지자체관리가 전체 대비 34.5%인 4,943개소이지만 유효저수량으로 보면 전체 27억7천만$m^3$ 중 8천4백만$m^3$ 3%수준, 지자체관리 대비 26.1%수준의 저수지가 있는 셈이다. 저수지의 축조년도를 지자체관리 저수지의 58%인 8,352개소의 저수지가 1948년 이전에 축조된 일명 '밀가루 댐'으로 불리는 저수지가 대부분이다. 축조된 지 60년 이상 된 시설물은 공용내구연한이 경과한 시설로서 노후손상부위를 복구해야 함은 물론 이상기후에 따른 강우사상의 변화로 설계빈도를 달리하여 재해대비 보강이 필요한 시설이다. 2002년 8월 제15호 태풍 루사나 2003년 9월 제14호 태풍 매미 등에 의해 저수지의 피해가 발생하는 빈도가 점차 늘어가고 있다. 따라서 지자체관리 저수지의 안전관리방안의 마련을 통한 재해대비보강 및 기능강화가 시급한 실정이다. 따라서 본 연구에서는 시 군 관리 농업용 저수지에 대하여 저수지 준공년도별 설계빈도에 대한 등급 구분 및 홍수배제 능력 등 수리 수문학적 안정성 기준을 설정하여 검토한 결과 1960년대 이전에 축조된 저수지의 경우 50%이상의 저수지에서 안정성에 문제가 생긴 것으로 파악되며, 1970년대에는 38%, 1980년대에는 34%, 1990년대에는 24%로 검토되었다. 이와 같이 안정성에 문제가 있는 저수지는 주기적인 모니터링과 보강이 필요하다고 사료된다.

  • PDF

Study on establishment of a governance for agricultural NPS pollution management (농업비점오염 관리를 위한 참여단위 거버넌스 구축 연구)

  • Jang, Jeong Ryeol;Um, Han Yong;Park, Hyeong Min;Jo, Young Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.29-29
    • /
    • 2016
  • 새만금호의 목표수질 달성과 지속가능한 관리를 위해서는 비점오염 관리의 필요성이 강조되고 있다. 특히, 새만금호 상류 유역은 농경지 비율이 38%로서 높아 농업활동에서 유래하는 농업 비점오염원의 효과적인 관리가 필요하다. 이를 위해서는 농업비점오염 저감기술의 개발하는 물리적 기술적 접근만이 아니라 농업인과 지역주민의 참여와 함께 행정적인 지원을 포함하는 사회 경제 문화적 접근을 포함하는 통합적인 접근 즉, 거버넌스가 요구된다. 이러한 거버넌스를 새만금유역의 농업비점 관리에 적용하려는 노력의 일환으로 "새만금유역 농업비점오염관리 거버넌스구축 사업모델 개발"에 대한 연구를 2015년부터 2016년까지 2년간 추진하게 되었다. 본 연구의 목적은 농업비점오염 관리를 위한 거버넌스 구축과 운영에 필요한 요소들을 도출하고 각각의 요소별 추진 프로세스를 개발하고 최종적으로 이를 상호 연계하여 운영하는 기법을 개발하는 것이다. 농업비점오염관리 거버넌스 구축의 접근 방향으로는 신규구축형과 기존정책사업연계형으로 접근하는 것이 바람직 할 것으로 판단된다. 거버넌스 시스템은 참여단위와 행정단위, 그리고 이것을 연계 지원하는 '중간지원조직'의 다층적 거버넌스 구조로 제안하였다. 참여단위 거버넌스는 공동체단위와 개별 농가단위의 참여 프로그램으로 설계하였다. 특히, 참여단위 거버넌스의 지속성을 유지하기 위해서 커뮤니티비즈니스 육성이 필요할 것으로 나타났다. 1차년도(2015년)에는 신규구축형을 중심으로 진행을 위하여 전라북도 부안군 백산면 용계리를 연구대상 지구로 선정하였다. 참여단위 거버넌스 구축을 위하여 연구대상 지구에서 우리 마을과 물 이야기, 우리마을회의 등 통하여 주민이 생각하는 지역의 역사와 문화 등 잠재자원을 발굴하였고, 이를 바탕으로 침체된 마을 공동체를 마을길을 연결하여 다시 활성화 하고, 물이 흐르는 마을도랑으로 가꾸고, 단절된 이웃간 마음을 연결하기 위한 "마을길-물길-마음길 연결" 커뮤니티 비즈니스 프로젝터를 도출하였다. 이러한 거버넌스구축 프로그램의 정보의 공유와 확산을 위하여 커뮤니티 비즈니스 안내판을 설치하고, 마을소식지(청파)를 제작배부하고 거버넌스구축 과정을 담은 마을영상다큐 제작을 진행하였다. 2차년도에는 커뮤니티 비즈니스 심화과정을 운영하고자 한다. 본 연구의 결과는 앞으로 농촌지역의 비점오염관리를 위한 거버넌스구축 등 정책 및 제도개선에 도움이 될 것으로 기대된다.

  • PDF

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Classification of Hydrologic Soil Groups of Soil Originated from Limestone by Assessing the Rates of Infiltration and Percolation (석회암 유래 토양의 침투 및 투수속도 평가에 따른 수문유형 분류)

  • Hur, Seung-Oh;Jung, Kang-Ho;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.103-109
    • /
    • 2009
  • Soils originated from limestone, located at the southern part of Kangwon province and Jecheon, Danyang of Chungbuk province are mainly composed of fine texture, and have different properties from soils originated from granite and granite gneiss, especially for water movement. This study was conducted for classification of hydrologic soil group (HSG) of soils originated from limestone by measuring the infiltration rate of surface soils and percolation rate of sub soils. Soils used for the experiment were 6 soils in total : Gwarim, Mosan, Jangseong, Maji, Anmi and Pyongan series. Infiltration and percolation rate were measured by a disc tension infiltrometer and a Guelph permeameter, respectively. Particle size distribution and organic matter content of the soils were analyzed. HSG, which was made by USDA NRCS(National Resources Conservation Service) for hydrology, of Gwarim series with O horizon of accumulated organic matter was classified as type A which show the properties of low runoff potential, rapid infiltration and percolation rate. HSG of Mosan series, which has high gravel content and very rapid permeability, was classified as type B/D because of the impermaeble base rock layer under 50cm from surface. HSG of Jangseong series with shallow soil depth was classified as type C/D owing to the impermaeble base rock layer under 50cm from surface. HSG of Maji series was type B, and HSG of Anmi series used as paddy land was type D because of slow infiltration and percolation rate caused by the disturbance of surface soil by puddling. HSG of Pyeongan series having a sudden change of layer in soil texture was type D because of the slow percolation rate caused a the layer.

Percentile Approach of Drought Severity Classification in Evaporative Stress Index for South Korea (Evaporative Stress Index (ESI)의 국내 가뭄 심도 분류 기준 제시)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Taegon;Park, Jong-Hwan;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.63-73
    • /
    • 2020
  • Drought is considered as a devastating hazard that causes serious agricultural, ecological and socio-economic impacts worldwide. Fundamentally, the drought can be defined as temporarily different levels of inadequate precipitation, soil moisture, and water supply relative to the long-term average conditions. From no unified definition of droughts, droughts have been divided into different severity level, i.e., moderate drought, severe drought, extreme drought and exceptional drought. The drought severity classification defined the ranges for each indicator for each dryness level. Because the ranges of the various indicators often don't coincide, the final drought category tends to be based on what the majority of the indicators show and on local observations. Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used as a index of the droughts occurring rapidly in a short period of time from studies showing a more sensitive and fast response to drought compared to Standardized Precipitation Index (SPI), and Palmer Drought Severity Index (PDSI). However, ESI is difficult to provide an objective drought assessment because it does not have clear drought severity classification criteria. In this study, U.S. Drought Monitor (USDM), the standard for drought determination used in the United States, was applied to ESI, and the Percentile method was used to classify drought categories by severity. Regarding the actual 2017 drought event in South Korea, we compare the spatial distribution of drought area and understand the USDM-based ESI by comparing the results of Standardized Groundwater level Index (SGI) and drought impact information. These results demonstrated that the USDM-based ESI could be an effective tool to provide objective drought conditions to inform management decisions for drought policy.

Selection of Appropiate Plant Species of VFS (Vegetative Filter Strip) for Reducing NPS Pollution of Uplands (밭 비점오염저감을 위한 초생대 적정 초종 선정)

  • Choi, Kyung-Sook;Jang, Jeong-Ryeol
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.973-983
    • /
    • 2014
  • This study focused on the selection of appropriate plant species of VFS (vegetative fiter strips) and the assessment of VFS effects for reducing NPS (non-point source) pollution from uplands. The experimental field was constructed with 1 control and 6 treated plots in the upland area of $1,500m^2$ with 5% slope which is located in Gunwi-gun, Gyeongbuk province. Six vegetation including Chufa, Common crabgrass, Barnyard grass, Turf grass, Tall fescue, Kenturky bluegrass, were applied to install VFS systems during the study period from June 2011 to Dec. 2012. The results of this study showed that 6.1~77.8% in runoff and 15.6~90.3% in TS, 49.9~96.6% in T-P, and 6.7~91.1% in T-N were reduced from the VFS treated plots. Generally high reduction effects were observed from TS, T-P, T-N, and SS, while BOD, TOC, and $NO_3^-$ showed low reductions. The best vegetation type was Turf grass showing higher reduction effects of NPS pollutions and having relatively easier maintenance efforts compared to other vegetations selected in this study. Based on these results, VFS technique found to be an effective management practice for reducing agricultural NPS pollutions in Korean upland conditions. Further study needs to be performed through various field experiments with long term monitoring in order to develop a design manual of VFS system for practical applications.

Influences of the Construction of the Torrent Control Structure using Customized Tetrapods on the Stream Water Quality at Valley (맞춤형 테트라블록을 이용한 야계사방구조물이 계류수질에 미치는 영향)

  • Park, Jae-Hyeon;Ma, Ho-Seop;Kim, Ki-Heung;Youn, Ho-Joong
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.105-111
    • /
    • 2011
  • The purpose of this study was to find out the effect of a torrent control structure using customized tetrapods on the forest water quality conservation and management. The study was conducted in the Honggye valley located in Sanchung-gun, Gyungsangnam-do, and stream water quality was compared before and after construction of torrent control structure. After construction of the torrent control structure using customized tetrapods, pH of stream water didn't get out of the range of River water quality standard class I. After construction of the torrent control structure using customized tetrapods, Dissolved Oxygen concentration didn't change, and Electrical Conductivity measurements agreed well within the range of normal clean stream water quality. After construction of the torrent control structure using customized tetrapods, average of total amount of anion was 3.07/2.30~3.60 mg/L, being slightly greater than before construction. Stream water quality after construction of the torrent control structure was similar to before construction. Therefore, it was find out that the torrent control structure didn't affect stream water quality.

NES Model Development: Expert System for Nitrogen Fertilizer Applications to Cornfields (NES 모델 개발 : 질소비료 적정 시용에 대한 전문가체계)

  • Kim, Won-Il;Jung, Goo-Bok;Fermanian, T.W.;Huck, M.G.;Park, Ro-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • N fertilizer recommendations to optimize with consideration to maximum crop yields, maximum profits, and minimum N losses to ground or runoff water, an advisory system. Nitrogen Expert System (NES), was developed. The system was to estimate the optimal rate of N fertilizer application cornfields in Illinois. NES was constructed using Smart Elements, a knowledge-based system that manages the expertise of human experts. NES was reinforced by addition of the effect of a productivity index (PI), soil organic matter content (SOM), and pre-sidedressing of nitrate concentration (PSNT) to the optimal N fertilizer recommendation. NES contains 49 rules, 1 class, 14 objects, and 2 properties. NES was successfully operated, showing N recommendations with inputs of three soil properties including PI, SOM, and PSNT. NES can reduce N loss to the environment, but adherence to the recommendations may also reduce farmers income. Therefore, NES will be more effective by evaluating both environmental damage assessment and other economic agricultural management parameters and other soil physico-chemical parameters.

  • PDF

Water Quality Management Strategies Evaluation of Juam Lake by A Fuzzy Decision-Making Method (퍼지 의사결정법에 의한 주암호 수질관리 전략 평가)

  • Lee, Yong Woon;Hwang, Yun Ae;Lee, Sung Woo;Lee, Byong Hi;Choi, Jung Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.699-712
    • /
    • 2000
  • Juam lake is a major water resource for the industrial and agricultural activities as well as the resident life of Kwangju and Chonnam regions. However, the water quality of the lake is getting worse due to a large quantity of pollutant inflowing to the lake. Thus, the strategy for achieving the water quality goal of the lake should be developed as soon as possible. When there are various alternatives that can be used as the strategy, several criteria based on the achievement degree of water quality goal, the applicability of technique and social environment, and the reasonableness of the cost required are made to evaluate and rank the alternatives. However, it is difficult to make a decision when there are multiple criteria and conflicting objectives and specifically the estimated values of criteria contain elements of uncertainty. The uncertainty stems from the lack of available information, the randomness of future situation, and the incomplete knowledge of expert. As the degree of uncertainty is higher, the decision becomes more difficult. In this study, a fuzzy decision-making method is presented to assist decision makers in evaluating various alternatives under uncertainty. The method allows decision makers to characterize the associated uncertainty by applying fuzzy theory and incorporate the uncertainty directly into the decision making process for selecting the "best" alternative so decisions can be made that are more appropriate and realistic than those made without taking uncertainty in account.

  • PDF

Water Scarcity Assessment Using Green and Blue Water Concepts (그린워터 및 블루워터를 이용한 물부족 평가)

  • Kim, Sung Eun;Lee, Dong Kun;Yang, Byung Sun;Jin, Yihua
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.267-278
    • /
    • 2018
  • With climate change and population growth, there are significant increases in water scarcity. There have been water security assessments to abate the gap between water demand and availability to support water resource management. However, most of the assessments are focusing on the water that flows through either on or below the land surface, failing to consider water that infiltrates and can be used by vegetation. This study presents water scarcity assessment accounting for Blue and Green water concept, and applied the method to Boryung region. Monthly streamflow, evapotranspiration, and soil moisture were estimated by SWAT modeling, and each of them was used to analyze Blue and Green water scarcity. Blue and Green water scarcity had different aspect, and the result indicated the time when water scarcity is more likely to happen. The water scarcity assessment framework presented in this paper provides novel assessment method integrating hydrologic and ecosystem aspects, thereby improving the understanding of how water resources should be managed.