• Title/Summary/Keyword: Agricultural water resources management

Search Result 397, Processing Time 0.028 seconds

Evaluation of Water Productivity of Thailand and Improvement Measure Proposals

  • Suthidhummajit, Chokchai;Koontanakulvong, Sucharit
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.176-176
    • /
    • 2019
  • Thailand had issued a national strategic development master plan with issues related to water resources and water security in the entire water management. Water resources are an important factor of living and development of the country's socio-economy to be stable, prosperous and sustainable. Therefore, water management in both multidimensional and multi-sectoral systems is important and will supports socio-economic and environmental development. The direction of national development in accordance with the national strategic framework for 20 years that requires the country to level up security level in terms of water, energy and food. To response to the proposed goals, there is a subplan to increase water productivity of the entire water system for economical development use by evaluating use value and to create more value added from water use to meet international standard level. This study aims to evaluate the water productivity of Thailand in each basin and all sectors such as agricultural sector, service and industrial sectors by using the water use data from water account analysis and GDP data from NESDB during the past 10 years (1996-2015). The comparison of water productivity with other countries will also be conducted and in addition, the measures to improve water productivity in next 20 years will be explored to response to the National Strategic Master Plan goals. Water productivity is defined as output per unit of water depleted. The simplest way to compare water productivity across different enterprises is in monetary terms. World Bank presents water productivity as an indication of the efficiency by which each country uses its water resources. There are two data sets used for water productivity analyses, i.e., the first is water use data at end users and the second is Gross Domestic Product. The water use at end users are estimated by water account method based on the System of Environmental-Economic Accounting for Water (SEEA-Water) concept of United Nations. The water account shows the analyses of the water balance between the use and supply of each water resource in physical terms. The water supply and use linkage in the water account analyses separated into each phases, i.e., water sources, water managers, water service providers, water user at end user under water regulators of all kinds of water use activities such as household, industrial, agricultural, tourism, hydropower, and ecological conservation uses. The Gross Domestic Product (GDP), a well- known measuring method of the national economic growth is not actually a comprehensive approach to describe all aspects of national economic status, since GDP does not take into account the costs of the negative impacts to natural resources that result from the overexploitation of development projects, however, at present, integrating the environment with the economy of a country to measure its economic growth with GDP is acceptable worldwide. The study results will show the water use at each basin, use types at end users, water productivity in each sector from 1996-2015 compared with other countries, Besides the productivity improvement measures will be explored and proposed for the National Strategic Master Plan.

  • PDF

Development of Storage Management System for Small Dams (소규모 댐의 저수관리 시스템 개발)

  • Kim, Phil-Shik;Kim, Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.15-25
    • /
    • 2005
  • Ninety tow percent of over 1,800 gate controlled dams in Korea are classified as small dams. The primary purpose of these small dams is to supply irrigation water. Therefore, while large dams can store as much as 80 percent of precipitation and thus are efficient to control flood, small dams are often lack of flood control function resulting in increased susceptibility drought and flood events. The purpose of this study is to develope a storage management model for irrigation dams occupying the largest portion of small dams. The proposed Storage Management Model (STMM) can be applied to the Seongju dam for efficient management. Besides, the operation standard is capable of analyzing additional available water, considering water demand and supply conditions of watershed realistically. And the model can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space. Consequently, if the small dams are managed by the proposed Storage management model, it is possible to maximize water resources securance and minimize drought and flood damages.

Assessment of Upland Drought Using Soil Moisture Based on the Water Balance Analysis (물수지 기반 지역별 토양수분을 활용한 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Yang, Mi-Hye;Mun, Young-Sik;Hong, Eun-Mi;Ok, Jung-Hun;Hwang, Seonah;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.

A Decision Support System for Paddy Rice Irrigation

  • Park, Seung-Woo;Chung, Ha-Woo;Kim, Byeong-Jin;Koo, Jee-Hee
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.99-113
    • /
    • 1991
  • Integrated irrigation management system (IIMS) that is incorporated with a microcomputer-based decision support system (DSS) has been developed and applied to paddy rice irrigation systems management. The system hardwares consist of field data acquisition units, data transmission units, central data processing units, and printing and displaying units. Ridld data to be collected include incremental rainfall, streamflow and reservoir water levels, and water levels at several irrigation canal sections within an irrigation sidtricts. The softwares are to process field data, real-time forecasting, irrigation control data, and decision variables from data-base and simulation model subsystems. And the user-interface subsystems are incorporated to present the water system operators and managers the results from data and model sugsystems. User-friendly menu with animated graphic modules are adopted to help understand irrigation controls for the district. This paper issues the overal descriptions of DSS as applied to Anjuk irrigation district. The details of major model components for the irrigation controls are presented along with real-time data collection systems. The potentials of DSS have been appraised very practical and promising for better irrigation system operation and management.

  • PDF

Behavior of Water Quality in Freshwater Lake of Tide Reclaimed Area Using SWMM and WASP5 Models (SWMM과 WASP5모형을 이용한 간척지 담수호의 수질거동 특성 조사)

  • 김선주;김성준;이석호;이준우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.148-160
    • /
    • 2002
  • Lake water quality assessment information is useful to anyone involved in lake management, from lakeshore owners to lake associations. 11 provides lake water quality, which can improve how to manage lake resources and how to measure current conditions. It also provides a knowledge base that can be used to protect and restore lakes. SWMM was applied to simulate the discharge and pollutant loads from Boryeong watershed, and WASP5 was applied to analyze the changes of water quality in Boryeong freshwater lake. In each model, the most suitable parameters were calculated through sensitive analysis and some parameters used default data. Simulated in SWMM and measured discharge showed the accuracy of 88.6%. T-N and T-P exceeds the criteria in the simulation of water quality in Boryeong freshwater lake, and control of pollutant loads in the main stream showed the most effective way. Integrated water quality management system was developed to give convenience in the operation of SWMM and WASP5 and data acquisition.

Promotion and Participation in the 4th World Water Forum (제4차 세계물포럼 추진 및 참여)

  • Park, Ji-Seon;Hong, Il-Pyo;Park, Yong-Woon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1348-1351
    • /
    • 2006
  • Recently human beings face serious water crisis, namely water management at the critical moment because of rapid increasing in population, subordinate part of a national budget, water pollution by domestic use and industrial use or waste, agricultural water use by intensive market farming, excessive development and extraction of water sources, and etc. We become to recognize that water and sanitation is the one of most important part which is threatening us with a drain on the water resources and death around the world and then are making opportunities of discussion for water policies and solutions of water problems through international network such as Global Water Partnership(GWP), World Water council(WWC). World Water Forum(WWF), as one of main water-related activities, aims at sharing knowledge and experience among various stakeholders for accomplishing a holistic water resources management by making common thoughts regarding the necessity of integration among different organizations related with water management, problems and issues. Also the unity of each local area for the holistic approach focuses on showing present local actions and actively supporting them, and suggesting new ideas. With Korea's participation in the 4th WWF this year, Korean government should have consistency in its establishment and implementation of sustainable water resources policies as a more active and future-oriented member of international water network. Finally it will be necessary that we will set up an organization and system which does publicity activities about results of various local actions of Korea around the world through next WWF in the future and contribute to solving global water problems.

  • PDF

Estimation of the Virtual Water Consumption for Food Consumption and Calorie Supply (식품 소비 및 칼로리 공급 변화에 따른 가상수 소비량의 변화 분석)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.77-86
    • /
    • 2015
  • The agricultural water management generally has focused on water resources for crop production but it could be affected by the food consumption pattern. The aim of this study is to estimate virtual water consumption for food consumption and calorie supply using the water footprint and virtual water concept. In addition, we estimated the virtual water requirements for increasing the food and calorie self-sufficiency adjusted by the government for food security. About $330.0m^3/cap/yr$ of virtual water was consumed for the main foods consumption in 1985, and it was increased to $450.0m^3/cap/yr$ in 2010. The rate of virtual water consumption by meats consumption was 28 % in 1985 but it was increased to 54 % in 2010. In other words, the total virtual water consumption by foods consumption was increased from 1985 to 2010 with the high rate of meats consumption. The average $1.29m^3$ of virtual water was consumed for supplying 1 calorie per capita in 2010 but about $10.1m^3/cal$ of virtual water was consumed by only bovine meats consumption. The food self-sufficiency is the main factor for food security in Korea. About $46.5Mm^3$ and $393.9Mm^3$ of virtual water were required in order to increase the food and calorie self-sufficiency of wheat by 1 % individually. This study showed the water consumption was related to food consumption and calorie supply pattern, and these results could be used as the indices for the agricultural water management considering the change of eating habit and food security.

State Indicator of Water Quality for Surface Water and Groundwater in Agriculture

  • Kim, Min-Kyeong;Jung, Goo-Bok;Ro, An-Sung;Choi, Seung-Chul;Choi, Won-Il;Kim, Eun-Jeong;Lee, Jong-Eun;Yun, Yeo-Uk;Kim, Kab-Cheol;Ko, Do-Young;Kim, Byeong-Ho;Kim, Hyeon-Ji;Park, Sang-Jo;Lee, Seong-Tae;Heo, Jae-Young;Yang, Sang-Ho;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.509-514
    • /
    • 2015
  • Indicators of environmental conditions qualitatively and quantitatively describe the state of the environment and natural resources, and the OECD (Organization for Economic Cooperation and Development) has initiated and suggested AEIs (Agri-Environmental Indicators) to assess trends over time of the effects of agriculture on the environment and the effectiveness and efficiency of agricultural and environmental policy measures since 1990's. This study aims to develop the state indicators of water quality for agricultural water, surface and groundwater, to evaluate the environmental impacts of agricultural activities and policies by qualifying the environmental levels of a nation. Status indicators were calculated according to the agricultural water quality standards of OECD and Korea, and their trends were analyzed over time. Particularly, nitrate ($NO_3{^-}$) status indicators of ground water in 2013 were significantly lower than the ones in 2000. Overall, the water quality indicators of surface water in 2013 were higher than the ones in 2012, except for pH and DO. The groundwater quality indicators in 2013 were lower than those of previous years. The optimal management indicators were calculated to assess agricultural surface water and groundwater quality. The findings of this study indicated that the state indicators could play a significant role to establish policies and procedures for managing and conserving water resources. This study also discussed water pollution caused by agricultural and industrial effluents.

Impacts of Climate Change on Water Crisis and Formation of Green Algal Blooms in Vietnam

  • Thriveni, Thenepalli;Lee, Namju;Nam, Gnu;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • Global warming affects water supply and water resources throughout the world. In many countries, climate change affects significantly on the fresh water resources. Vietnam is exposed mainly, to landslides and floods triggered by tropical storms and monsoon rains, although storm surge, whirlwind, river bank and coastal line erosion, hail rain. In addition to the prevalent drought, there are many major water challenges, including water availability, stress, scarcity and accessibility, because of poor resource management. Fast growth of urbanization, industrialization and population growth, agricultural activities and climate change cause heavy pressure on water quality. Both domestic and industrial wastewater, as well as storm water shares the same drainage. The common facilities for wastewater treatment are not available. Therefore, wastewater is treated only superficially and then discharged directly into rivers and lakes causing serious pollution of surface water environment. In this paper, we reported the severe water crisis and massive green algal blooms formation in Vietnam rivers and lakes. This is the biggest evidence of climate change variations in Vietnam.

Security of Upland Irrigation Water through the Effective Storage Management of Irrigation Dams (관개용 댐의 효율적 저수관리를 통한 밭 관개 용수 확보)

  • Lee Joo-Yong;Kim Sun-Joo;Kim Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.13-23
    • /
    • 2006
  • In Korea, upland irrigation generally depends on the ground water or natural rainfall since irrigation water supplied from dams is mainly used for paddy irrigation, and only limited amount of irrigation water is supplied to the upland area. For the stable security of upland irrigation water, storage level of irrigation dams was simulated by the periods. A year was divided into 4 periods considering the irrigation characteristics. Through the periodical management of storage level, water utilization efficiency in irrigation dams could be enhanced and it makes available to secure extra available water from existing dams without new development of water resources. Two study areas, Seongju and Donghwa dam, were selected for this study. Runoff from the watersheds was simulated by the modified tank model and the irrigation water to upland crops was calculated by the Penman-Monteith method. The analyzed results showed that relatively sufficient extra available water could be secured for the main upland crops in Seongju area. In case of Donghwa area, water supply to non-irrigated upland was possible in normal years but extra water was necessary in drought years such as 1998 and 2001.