• Title/Summary/Keyword: Agricultural water requirement

Search Result 131, Processing Time 0.022 seconds

Simulation of Agricultural Water Supply Considering Yearly Variation of Irrigation Efficiency (연단위 관개효율 변화를 고려한 관개지구 용수 공급량 모의)

  • Song, Jung Hun;Song, Inhong;Kim, Jin Taek;Kang, Moon Seong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.425-438
    • /
    • 2015
  • The objective of this study was to evaluate simulation of agricultural water supply considering yearly variation of irrigation efficiency. The water supply data of the Idong reservoir from 2001 through 2009 was collected and used for this study. Total 6 parameters including irrigation efficiency (Es), drainage outlet height, and infiltration, were used for sensitivity analysis, calibration, and validation. Among the parameters, the Es appeared to be the most sensitivity parameter. The Es was calibrated on a yearly basis considering sensitivity and time-varying characteristic, while other parameters were set to fixed values. The statistics of percent bias (PBLAS), Nash-Sutcliffe efficiency (NSE), and root means square error to the standard deviation of measured data (RSR) for a monthly step were 2.7%, 0.93, and 0.26 for the calibration, and 3.9%, 0.89, and 0.32 for the validation, correspondently. The results showed a good agreement with the observations. This implies that the modeling only with appropriate parameter values, apart from modeling approaches, can simulate the real supply operation reasonably well. However, the simulations with uncalibrated parameters from previous studies produced poor results. Thus, it is important to use calibrated values, and especially, we suggest the Es's yearly calibration for simulating agricultural water supply.

Comparing the composting characteristics of food waste supplemented with various bulking agents

  • Lee, Jae-Han;Yeom, Kyung-Rai;Yang, Jun-Woo;Choi, You-Jin;Hwang, Hyun-Chul;Jeon, Young-Ji;Lee, Chang-Hoon;Choi, Bong-Su;Oh, Taek-Keun;Park, Seong-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.897-905
    • /
    • 2019
  • To compare the composting characteristics of food waste supplemented with various bulking agents, aerated composting was performed by mixing sawdust, ginkgo leaves, insect feces, and mushroom waste at ratios of 6 : 4 (w/w). The initial temperatures (day after treatment [DAT] 3) of the sawdust, ginkgo leaves, insect feces and the mushroom waste mixtures were 39, 58, 65, and 51℃, respectively. The DAT 3 temperature was the highest in the food waste-insect feces mixture (65℃) and the lowest in the sawdust one (39℃). However, the insect feces treatment was terminated at DAT 21 because of a high water content (70.92%). The water content (DAT 56) of the composted food waste supplemented with sawdust, mushroom waste, and ginkgo leaves stood at 51.28, 39.81, and 44.92%, respectively. Therefore, the fully mature composts satisfied the water content requirement of less than 55% as recommended in the fertilizer standards of the RDA of Korea. The results of the CoMMe-101, Solvita and seed germination index methods indicate that the mushroom waste and ginkgo leaves treatments matured relatively quicker than that of the sawdust one. Based on the above observations, it is concluded that the mushroom waste and ginkgo leaves are more effective bulking agents compared to sawdust and as such, are recommended as suitable replacements for sawdust in food waste composting.

Soil Salt Prediction Modeling for the Estimation of Irrigation Water Requirements for Dry Field Crops in Reclaimed Tidelands (간척지 밭작물의 관개용수량 추정을 위한 토양염분예측모형 개발)

  • 손재권;구자웅;최진규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.96-110
    • /
    • 1994
  • The purpose of this study is to develop soil salt prediction model for the estimation of irrigation water requirements for dry field crops in reclaimed tidelands. The simulation model based on water balance equation, salt balance equation, and salt storage equation was developed for daily prediction of sa]t concentration in root zone. The data obtained from field measurement during the growing period of tomato were used to evaluate the applicability of this model. The results of this study are summarized as follows: 1.The optimum irrigation point which maximizes the crop yield in reclaimed tidelands of silt loam soil while maintaining the salt concentration within the tolerance level, ws found to be pF 1.6, and total irrigation requirement after transplanting was 602mm(6.7 mm/day)for tomato. 2.When the irrigation point was pF 1.6, the deviation between predicted and measured salt concentration was less than 4 % at the significance level of 1 7% 3.Since the deviations between predicted and measured values data decrease as the amount of irrigation water increases, the proposed model appear to be more suitable for use in reclaimed tidelands. 4.The amount of irrigation water estimated by the simulation model was 7.2mm/day in the average for cultivating tomato at the optimum irrigation point of pF 1.6.The simulation model proposed in this study can be generalized by applying it to other crops. This, model, also, could be further improved and extended to estimate desalinization effects in reclaimed tidelands by including meteorological effect, capillary phenomenon, and infiltration.

  • PDF

Strategies to improve irrigation water management for rice production in Pulangui River Irrigation System

  • Siem, Paul Roderick M.;Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.509-509
    • /
    • 2022
  • Rice has always been the anchor of food security in the Philippines and the government is adamant about sustaining rice production by ensuring reliable irrigation water availability. Among the numerous irrigation schemes, the importance of the Pulangui River Irrigation System (PRIS) is undeniable, as it is the largest and primary irrigation source for rice production areas which are considered the food basket in Northern Mindanao. However, the ageing irrigation structures, unlined canals, long-standing water delivery systems, and climate change are compromising the performance of PRIS; and every year, during the dry and wet season, the maximum rice irrigable area is not achieved. From the field-scale water management perspective, untimely irrigation application, an unregulated roster of turn for irrigation among farmers, and the traditional practice of flooding the rice fields are the main causes of substantial water losses in conveyance, distribution, and farm application of irrigation water. Hence, proper irrigation scheduling is crucial to cultivate the maximum irrigable area by ensuring equity among the farmers and to increase the water use efficiency and yield. In this study, the FAO single crop coefficient approach was adopted to estimate rice water requirements, which were subsequently used to suggest appropriate irrigation schedules based on the recommended field-scale rice cultivation practices. The study results would improve the irrigation system management in the study area by facilitating in regulating the canal water flows and releases according to suggested irrigation schedules that could lead to increased benefited area, yield, and water efficiency without straining the available water resources.

  • PDF

Unit Loads of Pollutants in a Paddy Fields Area with Large-Scaled Plots during Irrigation Seasons (관개기 대구획 광역논에서의 오염부하 원단위)

  • 오승영;김진수;김규성;김선종;윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.136-147
    • /
    • 2002
  • Characteristics of unit loads of pollutants were investigated at a paddy fields area(Soro-ri) with large-scaled plots on loam soil during irrigation seasons of 1999 ∼2000. The average irrigation requirement of experimental paddy area are estimated at over 3,000 mm. The unit loads of pollutants in paddy fields area are determined by subtracting irrigation water load from outflow load (percolated and surface outflow loads). Surface outflow load in rainy days was calculated using the relationships of discharge and load, which are grouped into fertilizing and non-fertilizing periods. The ratios of the surface outflow load in rainy days to the total surface outflow load are 16.4% for T-N, 26.8% for T-P, and 23.3% far CODc,. The unit loads of pollutants show month-to-month and year-to-year variations, and monthly unit load of pollutants can show negative values, indicating that the paddy area acts as the pollutants sink. The average unit loads of the pollutants during irrigation seasons were estimated at 18.2 kg/ha fur T-N, 0.31 kg/ha for T-P, and 43.3 kg/ha for CODc,, which are smaller than the reported values for Kosei area in Japan.

Analysis of Anti-adipogenic Constituents of Cordyceps militaris Using High Performance Liquid Chromatography-Diode Array Detection in Different Samples: Comparison with Anti-adipogenic Activity

  • Liu, Qing;Hong, In-Pyo;Han, Sang-Bae;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.171-176
    • /
    • 2012
  • We previously isolated cordycepin, guanosine and tryptophan from Cordyceps militaris as antiadipogenic constituents. For the quality control of C. militaris for anti-adipogenic activity, simultaneous analytical method using high-performance liquid chromatography (HPLC)-diode array detection (DAD) was developed and validated. Quantitation of these compounds in various Cordyceps samples from different sources and various extraction methods were conducted using developed method. Our study shows that natural Cordyceps and host insect possess higher content than cultured ones and fruiting bodies, respectively. The content of cordycepin showed great difference in different C. militaris samples whereas trytophan content was similar in tested samples. Addition of water to extraction solvent greatly increased the yield of guanosine and tryptophan. High temperature and longer extraction time increased yield of guanosine, whereas the content of trytophan was decreased in high temperature during extraction with water. Extraction using ultrasonic apparatus slightly increased extraction efficiency. Cordycepin, however, has little variation in different extraction method tested. Strong anti-adipogenic activity was observed in the samples that contain all the three constituents. Taken together, quantitation of these compounds using developed analytical method might provide basic requirement for the anti-adipogenic activity of C. militaris.

The Study on the Irrigation Water Control in the Cultivation of Rice Plants (수도작에 있어서 물관리에 대한 연구)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.2
    • /
    • pp.1193-1199
    • /
    • 1966
  • More stable and higher yields in rice paddy depend mainly upon an adequately balanced supply of water for higher yield. Rice paddy is supplied naturally by rainfall but inevitably requires artificial supplenental irrigation for higher yields. Even though it may be true that the water requirement of rice plants is generally higher than those of other crops, the submerged condition is not necessarily required for rice. The moisture requirements of rice vary according to its growing stages and it is possible to increse the irrigation efficiency by means of lessening the loss due to percolation and evapolation in the field. This experiment was conducted on the effect of the various amount of water supply and different irrigation periods for yield and yield components, and was carried out to find out the most suitable irrigation method and to increase the irrigation efficiency for higher yields in rice paddy. Randomized block design with 3 replications was employed where the 3 levels of the amount of irrigation water; (120% moisture contents), unirrigated (90~100%) and more un irrigated candition (80~90% moisture content), and levels of the various irrigation periods; usual, initial, intermediate and final periods, being treated. The results obtained in this experiment are as follows: 1. As for the physical and chemical and soil properfies, and other characteristics, there are no differences among the treatments enough to be effective for the growth of rice plants. 2. Culm length was measured after harvest as shown in table 2. 3. Difference of the amount of irrigation water did not change the culm length and ear length, however it also indicated more apparent increase in final treatment plots thatn that of usual. 3. No difference in the number of ears and number of ears pers per hill was founded treatments both in the difference of water supply and in the various irrigation periods. 4. There is no difference in the maturing rate and 1000 grains weight. 5. The number of panicles and grains and more increased in 80~100% moisture contents soil than those of 120%. and it shows in un irrigated plots, more irrigated plots and control plots in turn. Other wise according to the period\ulcorner of irrigation the trend is appeared in turn initial, usual, final and intermediate treatments.6. Yield as shown in table 7. 8 was more increased in unirrigated plots(90~IOO% moisture content) than the control plots (120% moisture content) by up to 8.2% and also 3. 2% in more unirrigated plots than that of control by periods is shown: usual plots final, initial, inter mediate treatment plots in turn. 7. The above resutts lead to the conclusion that no remarkable, differences in yields and soil properties are made by the unirrigation. However, it is apparent that this treatment has .some advantages in the points that one could spare the amount of water supply for irrigation with more increase in yield. In addition, a higher temperature and a brisk oxygen supply would be possible throug h this treatments. Accordingly, these treatment would be a more reasonable and economical cultivation method of rice for the better harvest.

  • PDF

Method for Estimating Irrigation Requirements by G.H. Hargreaves. (Hargreaves식에 의한 필요수량산정에 관한 소고)

  • 엄태영;홍종진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.3
    • /
    • pp.4195-4205
    • /
    • 1976
  • The purpose of this study is to evaluate the existing methods for calculating or estimating the consumptive use (Evaportranspiration) of any agricutural development project area. In determing the consumptive use water in the project area, there will require the best way for estimating irrigation requirement. Many methods for computing the evaportranspiration have been used, each of them with its merits and demerits at home and abroad. Some of these methods are listed as follows: 1.The Penman's formula 2.The B1aney-Criddle method 3.The Munson P.E. Index method 4.The Atmometer method 5.The Texas Water Rights Commission (TWRC) method 6.The Jensen-Haise method 7.The Christiasen method Therefore, the authors will introduce the more widely used method for calculating Consumptive Use by G.H. Hargreaves. The formula is expressed in the form Ep= K·d·T (1.0-0.01·Hn) Hn=1.0+0.4H+0.005H2. This method was adopted for the first time to determine the Irrigation requirements of Ogseo Comprehensive Agricultual Development project (Benefited area:100,500ha) in Korea. This method is presented in somewhat greater detail than the others. Formula is given for the computation of evaportranspiration (with various levels of data availability) Sampel computation of irrigation requirements for Ogseo irrigation project is included. The results and applied materials are summarized as follows. 1. In calculating the Hargreaves formula, the mean temperature relative, humidity, length of day, and percentage of sunshine from three stations of Iri, Jeonju, and Gunsan were used. 2. Monthly evaporation values were calculated by using the formula. 3. Meteological data from the three stations records for the ten years (1963∼1972) were used. 4. The annual irrigation requirements is 1,186mm per hectare, but the case to consider effective rainfall amount takes the annual irrigation demand being 700mm per hectare.

  • PDF

Estimation of Drought Rainfall by Regional Frequency Analysis using L and LH-Moments(I) - On the Method of L-Moments - (L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정(I) - L-모멘트법을 중심으로 -)

  • 이순혁;윤성수;맹승진;류경식;주호길
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.97-109
    • /
    • 2003
  • This study is mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. It is anticipated to suggest optimal design drought rainfall of hydraulic structures for the water requirement and drought frequency of occurrence for the safety of water utilization through this study. Preferentially, this study was conducted to derive the optimal regionalization of the precipitation data that can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. Five homogeneous regions in view of topographical and climatological aspects were accomplished by K-means clustering method. Using the L-moment ratio diagram and Kolmogorov-Smirnov test, generalized extreme value distribution was confirmed as the best fitting one among applied distributions. At-site and regional parameters of the generalized extreme value distribution were estimated by the method of L-moments. Design drought rainfalls using L-moments following the consecutive duration were derived by the at-site and regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design drought rainfall derived by at-site and regional analysis in the observed an simulated data were computed and compared. In has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE. RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design drought rainfall. Consequently, optimal design drought rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

Strengths and Permeability Properties of Porous Polymer Concrete for Pavement with Different Fillers (충전재 종류에 따른 포장용 포러스 폴리머 콘크리트의 강도 및 투수 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.51-59
    • /
    • 2007
  • Recently, concrete has been made porous and used for sound absorption, water permeation, vegetation and water purification according to void characteristics. Many studies are carried out on the utilization of sewage sludge, fly ash and waste concrete to reduce the environmental load. This study was performed to evaluate the void, strength, relationship between void and strength, permeability and chemical resistance properties of porous polymer concrete for pavement with different fillers. An unsaturated polyester resin was used as a binder, crushed stone and natural sand were used as an aggregate and bottom ash, fly ash and blast furnace slag were used as fillers. The mix proportions were determined to satisfy the requirement for the permeability coefficient, $1{\times}10^{-2}$ cm/s for general permeable cement concrete pavement in Korea. The void ratios of porous polymer concrete with fillers were in the range of $18{\sim}23%$. The compressive strength and flexural load of porous polymer concrete with fillers were in the range of $19{\sim}22$ MPa and $18{\sim}24$ KN, respectively. The permeability coefficients of porous polymer concrete with fillers were in the range of $5.5{\times}10^{-1}{\sim}9.7{\times}10^{-2}$ cm/s. At the sulfuric acid resistance, the weight reduction ratios of porous polymer concrete immersed during 8-week in 5% $H_{2}SO_{4}$ were in the range of $1.08{\sim}3.56%$.