• Title/Summary/Keyword: Agricultural big data

Search Result 147, Processing Time 0.028 seconds

Information Technology Infrastructure for Agriculture Genotyping Studies

  • Pardamean, Bens;Baurley, James W.;Perbangsa, Anzaludin S.;Utami, Dwinita;Rijzaani, Habib;Satyawan, Dani
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.655-665
    • /
    • 2018
  • In efforts to increase its agricultural productivity, the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development has conducted a variety of genomic studies using high-throughput DNA genotyping and sequencing. The large quantity of data (big data) produced by these biotechnologies require high performance data management system to store, backup, and secure data. Additionally, these genetic studies are computationally demanding, requiring high performance processors and memory for data processing and analysis. Reliable network connectivity with large bandwidth to transfer data is essential as well as database applications and statistical tools that include cleaning, quality control, querying based on specific criteria, and exporting to various formats that are important for generating high yield varieties of crops and improving future agricultural strategies. This manuscript presents a reliable, secure, and scalable information technology infrastructure tailored to Indonesian agriculture genotyping studies.

Agriculture Big Data Analysis System Based on Korean Market Information

  • Chuluunsaikhan, Tserenpurev;Song, Jin-Hyun;Yoo, Kwan-Hee;Rah, Hyung-Chul;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.217-224
    • /
    • 2019
  • As the world's population grows, how to maintain the food supply is becoming a bigger problem. Now and in the future, big data will play a major role in decision making in the agriculture industry. The challenge is how to obtain valuable information to help us make future decisions. Big data helps us to see history clearer, to obtain hidden values, and make the right decisions for the government and farmers. To contribute to solving this challenge, we developed the Agriculture Big Data Analysis System. The system consists of agricultural big data collection, big data analysis, and big data visualization. First, we collected structured data like price, climate, yield, etc., and unstructured data, such as news, blogs, TV programs, etc. Using the data that we collected, we implement prediction algorithms like ARIMA, Decision Tree, LDA, and LSTM to show the results in data visualizations.

Construction of LOK(Linked Open Knowledge) System for Advancement of Domestic Agricultural Industry (국내 농업의 선진화를 위한 LOK(Linked Open Knowledge) 구축 방안 연구)

  • Jeong, Jee-Yeon;Jeong, Seong-Hun;Lee, Sae-Bom;Jung, Jae-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.428-436
    • /
    • 2014
  • The convergence technology of ICT(Information & Communication Technology) in agriculture is the main key of the future agricultural industry. Recently, many that by using big data it can improve crop growth-circumstance and agricultural Industry. However, the data of crop growth-circumstance has been not shared and operated separately by individual farm. Therefore, it is necessary to build the LOK(Linked Open Knowledge) system for Quality of Farming & Farm product. We research previous studies for big data and development of the corp growth-circumstance using big data system case. Also, we suggest to build LOK system for improving the domestic agricultural industry.

Relations Between Paprika Consumption and Unstructured Big Data, and Paprika Consumption Prediction

  • Cho, Yongbeen;Oh, Eunhwa;Cho, Wan-Sup;Nasridinov, Aziz;Yoo, Kwan-Hee;Rah, HyungChul
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.113-119
    • /
    • 2019
  • It has been reported that large amounts of information on agri-foods were delivered to consumers through television and social networks, and the information may influence consumers' behavior. The purpose of this paper was first to analyze relations of social network service and broadcasting program on paprika consumption in the aspect of amounts to purchase and identify potential factors that can promote paprika consumption; second, to develop prediction models of paprika consumption by using structured and unstructured big data. By using data 2010-2017, cross-correlation and time-series prediction algorithms (autoregressive exogenous model and vector error correction model), statistically significant correlations between paprika consumption and television programs/shows and blogs mentioning paprika and diet were identified with lagged times. When paprika and diet related data were added for prediction, these data improved the model predictability. This is the first report to predict paprika consumption by using structured and unstructured data.

Smart Plant Disease Management Using Agrometeorological Big Data (농업기상 빅데이터를 활용한 스마트 식물병 관리)

  • Kim, Kwang-Hyung;Lee, Junhyuk
    • Research in Plant Disease
    • /
    • v.26 no.3
    • /
    • pp.121-133
    • /
    • 2020
  • Climate change, increased extreme weather and climate events, and rapidly changing socio-economic environment threaten agriculture and thus food security of our society. Therefore, it is urgent to shift from conventional farming to smart agriculture using big data and artificial intelligence to secure sustainable growth. In order to efficiently manage plant diseases through smart agriculture, agricultural big data that can be utilized with various advanced technologies must be secured first. In this review, we will first learn about agrometeorological big data consisted of meteorological, environmental, and agricultural data that the plant pathology communities can contribute for smart plant disease management. We will then present each sequential components of the smart plant disease management, which are prediction, monitoring and diagnosis, control, prevention and risk management of plant diseases. This review will give us an appraisal of where we are at the moment, what has been prepared so far, what is lacking, and how to move forward for the preparation of smart plant disease management.

The Economic Effects of Chemical Fertilizer in Big Data (작목별 비료투입에 따른 경제적 효과 추정)

  • Lee, Sang-Ho;Song, Kyung-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.619-628
    • /
    • 2018
  • This study analyze the economic effect of chemical fertilizer. We used the input and output data, and the analysis variables include production output nitrogen, phosphoric acid, potassium, seeds, and labor. The main results are as follows. First, for spring potatoes, potassium increases to a certain level of output, but over a certain stage, the output decreases as the input increases. Optimal use of potassium in the calculation of spring potatoes can achieve the effect of reducing input costs and increasing output simultaneously. Second, radish In autumn, nitrogen increases to a certain level, but over a certain stage it represents a reverse U-shaped relationship in which output decreases as input increases. This means that reducing the amount of fertilizer input increases the output. This means that soil-related agricultural big data can contribute to the management of nutrients and greenhouse gas reduction in agricultural land.

Smart Farming Preliminary production phase service based on Big data Analysis (빅 데이터 분석 기반의 스마트 농업 생산 전 단계를 위한 서비스)

  • Kim, Dong Il;Chung, Hee Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.194-196
    • /
    • 2021
  • This focuses on the Cultivation Plan Service at the preliminary production phase is critical in that it supports agricultural producers' decision by providing related information such as predicted crop production or expected profits for consulting or other agricultural information when they plan to cultivate. This paper describes the reference architecture of the farming sector will benefit immensely from the implementation of farming data in farming contents repository which will serve as the knowledge base for the Cultivation Plan Service at the pre-production stage based on Big data analysis.

  • PDF

Design and Implementation of Big Data Platform for Image Processing in Agriculture (농업 이미지 처리를 위한 빅테이터 플랫폼 설계 및 구현)

  • Nguyen, Van-Quyet;Nguyen, Sinh Ngoc;Vu, Duc Tiep;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.50-53
    • /
    • 2016
  • Image processing techniques play an increasingly important role in many aspects of our daily life. For example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image processing systems are designed for small-scale and local computation, and they do not scale well to handle big data problems with their large requirements for computational resources and storage. In this paper, we have proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which are frequently used in image processing. In our experiment, we show that our platform outperforms traditional system in a scenario of image segmentation.

Big Data Analysis of Agricultural Products E-Commerce According to Meteorological Environment (기상환경에 따른 농산물 전자상거래 빅데이터 분석)

  • Lee, Seok-In;Kim, Ki-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.113-116
    • /
    • 2020
  • 본 연구의 목적은 최근 비중이 급증하고 있는 국내 전자상거래 시장에서 농산물 판매 현황이 지역 날씨와 생육 환경 등 농산물 생산과 연관성이 높은 데이터와 어떤 관계가 있는지를 분석하는 것이다. 이를 위해 전라남도 농산물의 온라인 판매 현황을 분석하고, 전남 지역 날씨와 생육 환경에 관한 표준화된 데이터를 안정적으로 확보할 수 있도록 빅데이터 시스템을 구축하고자 한다. 본 연구의 결과는 지역 농업인의 농산물 생산과 유통 의사결정에 시사점을 제공하고 궁극적으로는 생산성과 수익성 향성에 기여할 것으로 기대된다.

  • PDF