• Title/Summary/Keyword: Agricultural big data

Search Result 147, Processing Time 0.038 seconds

The Current Situation of the Big Data Utilization in the Agricultural Food Area and its Future Direction

  • Chung, Daniel Byungho;Cho, Jongpyo;Moon, Junghoon
    • Agribusiness and Information Management
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 2013
  • The purpose of this study is to prove that new values for the agricultural food area can be created by combining various big data collected in the agricultural food area and analyzing them in an appropriate analysis method. For this, the analysis techniques generally used were studied, and the use of the big data in the various areas of the current society was explored through practical application instances. In addition, by the current status and analysis instances of the big data use in the agricultural food area, this study was conducted to verify how the new values found were being used.

Design of a Platform for Collecting and Analyzing Agricultural Big Data (농업 빅데이터 수집 및 분석을 위한 플랫폼 설계)

  • Nguyen, Van-Quyet;Nguyen, Sinh Ngoc;Kim, Kyungbaek
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.149-158
    • /
    • 2017
  • Big data have been presenting us with exciting opportunities and challenges in economic development. For instance, in the agriculture sector, mixing up of various agricultural data (e.g., weather data, soil data, etc.), and subsequently analyzing these data deliver valuable and helpful information to farmers and agribusinesses. However, massive data in agriculture are generated in every minute through multiple kinds of devices and services such as sensors and agricultural web markets. It leads to the challenges of big data problem including data collection, data storage, and data analysis. Although some systems have been proposed to address this problem, they are still restricted either in the type of data, the type of storage, or the size of data they can handle. In this paper, we propose a novel design of a platform for collecting and analyzing agricultural big data. The proposed platform supports (1) multiple methods of collecting data from various data sources using Flume and MapReduce; (2) multiple choices of data storage including HDFS, HBase, and Hive; and (3) big data analysis modules with Spark and Hadoop.

Evaluation of the Relationship between Meteorological, Agricultural and In-situ Big Data Droughts (기상학적 가뭄, 농업 가뭄 및 빅데이터 현장가뭄간의 상관성 평가)

  • LEE, Ji-Wan;JANG, Sun-Sook;AHN, So-Ra;PARK, Ki-Wook;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.64-79
    • /
    • 2016
  • The purpose of this study is to find the relationship between precipitation deficit, SPI(standardized precipitation index)-12 month, agricultural reservoir water storage deficit and agricultural drought-related big data, and to evaluate the usefulness of agricultural risk management through big data. For the long term drought (from January 2014 to September 2015), each data was collected and analysed with monthly and Provincial base. The minimum SPI-12 and maximum reservoir water storage deficit compared to normal year were occurred at the same time of July 2014, and August and September 2015. The maximum frequency of big data was occurred at June and July of 2014, and March and June to September of 2015. The maximum big data was occurred 1 month advanced in 2014 and 2 months advanced in 2015 than the maximum reservoir water storage deficit. The occurrence of big data was sensitive to spring drought from March, late Jangma of June, dry Jangma of July and the rainfall deficit of September 2015. The big data was closely related with the meteorological drought and agricultural drought. Because the big data is the in situ feeling drought, it is proved as a useful indicator for agricultural risk management.

Big Data Activation Plan for Digital Transformation of Agriculture and Rural (농업·농촌 디지털 전환을 위한 빅데이터 활성화 방안 연구)

  • Lee, Won Suk;Son, Kyungja;Jun, Daeho;Shin, Yongtae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.8
    • /
    • pp.235-242
    • /
    • 2020
  • In order to promote digital transformation of our agricultural and rural communities in the wake of the fourth industrial revolution and prepare for the upcoming artificial intelligence era, it is necessary to establish a system and system that can collect, analyze and utilize necessary quality data. To this end, we will investigate and analyze problems and issues felt by various stakeholders such as farmers and agricultural officials, and present strategic measures to revitalize big data, which must be decided in order to promote digital transformation of our agricultural and rural communities, such as expanding big data platforms for joint utilization, establishing sustainable big data governance, and revitalizing the foundation for big data utilization based on demand.

Analysis of Social Welfare Effects of Onion Observation Using Big Data (빅데이터를 활용한 양파 관측의 사회적 후생효과 분석)

  • Joo, Jae-Chang;Moon, Ji-Hye
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.3
    • /
    • pp.317-332
    • /
    • 2021
  • This study estimated the predictive onion yield through Stepwise regression of big data and weather variables by onion growing season. The economic feasibility of onion observations using big data was analyzed using estimated predictive data. The social welfare effect was estimated through the model of Harberger's triangle using onion yield prediction with big data and it without big data. Predicted yield using big data showed a deviation of -9.0% to 4.2%. As a result of estimating the social welfare effect, the average annual value was 23.3 billion won. The average annual value of social welfare effects if big data was not used was measured at 22.4 billion won. Therefore, it was estimated that the difference between the social welfare effect when the prediction using big data was used and when it was not was about 950 million won. When these results are applied to items other than onion items, the effect will be greater. It is judged that it can be used as basic data to prove the justification of the agricultural observation project. However, since the simple Harberger's triangle theory has the limitation of oversimplifying reality, it is necessary to evaluate the economic value through various methods such as measuring the effect of agricultural observation under a more realistic rational expectation hypothesis in future studies.

Blockchain and AI-based big data processing techniques for sustainable agricultural environments (지속가능한 농업 환경을 위한 블록체인과 AI 기반 빅 데이터 처리 기법)

  • Yoon-Su Jeong
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.17-22
    • /
    • 2024
  • Recently, as the ICT field has been used in various environments, it has become possible to analyze pests by crops, use robots when harvesting crops, and predict by big data by utilizing ICT technologies in a sustainable agricultural environment. However, in a sustainable agricultural environment, efforts to solve resource depletion, agricultural population decline, poverty increase, and environmental destruction are constantly being demanded. This paper proposes an artificial intelligence-based big data processing analysis method to reduce the production cost and increase the efficiency of crops based on a sustainable agricultural environment. The proposed technique strengthens the security and reliability of data by processing big data of crops combined with AI, and enables better decision-making and business value extraction. It can lead to innovative changes in various industries and fields and promote the development of data-oriented business models. During the experiment, the proposed technique gave an accurate answer to only a small amount of data, and at a farm site where it is difficult to tag the correct answer one by one, the performance similar to that of learning with a large amount of correct answer data (with an error rate within 0.05) was found.

A Study on the Key Factors Affecting Big Data Use Intention of Agriculture Ventures in Terms of Technology, Organization and Environment: Focusing on Moderating Effect of Technical Field (농업벤처기업의 빅데이터 활용의도에 영향을 미치는 기술·조직·환경 관점의 핵심요인 연구: 기술분야의 조절효과를 중심으로)

  • Ahn, Mun Hyoung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.249-267
    • /
    • 2021
  • The use of big data accumulated along with the progress of digitalization is bringing disruptive innovation to the global agricultural industry. Recently, the government is establishing an agricultural big data platform and a support organization. However, in the domestic agricultural industry, the use of big data is insufficient except for some companies in the field of cultivation and growth. In this context, this study identifies factors affecting the intention to use big data in terms of technology, organization and environment, and also confirm the moderating effect of technical field, focusing on agricultural ventures which should be the main entities in creating innovation by using big data. Research data was obtained from 309 agricultural ventures supported by the A+ Center of FACT(Foundation of AgTech Commercialization and Transfer), and was analyzed using IBM SPSS 22.0. As a result, Among technical factors, relative advantage and compatibility were found to have a significant positive (+) effect. Among organizational factors, it was found that management support had a positive (+) effect and cost had a negative (-) effect. Among environmental factors, policy support were found to have a positive (+) effect. As a result of the verification of the moderating effect of technology field, it was found that firms other than cultivation had a moderating effect that alleviated the relationship between all variables other than relative advantage, compatibility, and competitor pressure and the intention to use big data. These results suggest the following implications. First, it is necessary to select a core business that will provide opportunities to generate new profits and improve operational efficiency to agricultural ventures through the use of big data, and to increase collaboration opportunities through policy. Second, it is necessary to provide a big data analysis solution that can overcome the difficulties of analysis due to the characteristics of the agricultural industry. Third, in small organizations such as agricultural ventures, the will of the top management to reorganize the organizational culture should be preceded by a high level of understanding on the use of big data. Fourth, it is important to discover and promote successful cases that can be benchmarked at the level of SMEs and venture companies. Fifth, it will be more effective to divide the priorities of core business and support business by agricultural venture technology sector. Finally, the limitations of this study and follow-up research tasks are presented.

A Study on Factors Affecting BigData Acceptance Intention of Agricultural Enterprises (농업 관련 기업의 빅데이터 수용 의도에 미치는 영향요인 연구)

  • Ryu, GaHyun;Heo, Chul-Moo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.157-175
    • /
    • 2022
  • At this moment, a paradigm shift is taking place across all sectors of society for the transition movements to the digital economy. Various movements are taking place in the global agricultural industry to achieve innovative growth using big data which is a key resource of the 4th industrial revolution. Although the government is making various attempts to promote the use of big data, the movement of the agricultural industry as a key player in the use of big data, is still insufficient. Therefore, in this study, effects of performance expectations, effort expectations, social impact, facilitation conditions, based on the Unified Theory of Acceptance and Use of Technology(UTAUT), and innovation tendencies on the acceptance intention of big data were analyzed using the economic and practical benefits that can be obtained from the use of big data for agricultural-related companies as moderating variables. 333 questionnaires collected from agricultural-related companies were used for empirical analysis. The analysis results using SPSS v22.0 and Process macro v3.4 were found to have a significant positive (+) effect on the intention to accept big data by effort expectations, social impact, facilitation conditions, and innovation tendencies. However, it was found that the effect of performance expectations on acceptance intention was insignificant, with social impact having the greatest influence on acceptance intention and innovation tendency the least. Moderating effects of economic benefit and practical benefit between effort expectation and acceptance intention, moderating effect of practical benefit between social impact and acceptance intention, and moderating effect of economic benefit and practical benefit between facilitation condition and acceptance intention were found to be significant. On the other hand, it was found that economic benefits and practical benefits did not moderate the magnitude of the influence of performance expectations and innovation tendency on acceptance intention. These results suggest the following implications. First, in order to promote the use of big data by companies, the government needs to establish a policy to support the use of big data tailored to companies. Significant results can only be achieved when corporate members form a correct understanding and consensus on the use of big data. Second, it is necessary to establish and implement a platform specialized for agricultural data which can support standardized linkage between diverse agricultural big data, and support for a unified path for data access. Building such a platform will be able to advance the industry by forming an independent cooperative relationship between companies. Finally, the limitations of this study and follow-up tasks are presented.

Analysis of the influence of food-related social issues on corporate management performance using a portal search index

  • Yoon, Chaebeen;Hong, Seungjee;Kim, Sounghun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.955-969
    • /
    • 2019
  • Analyzing on-line consumer responses is directly related to the management performance of food companies. Therefore, this study collected and analyzed data from an on-line portal site created by consumers about food companies with issues and examined the relationships between the data and the management performance. Through this process, we identified consumers' awareness of these companies obtained from big data analysis and analyzed the relationship between the results and the sales and stock prices of the companies through a time-series graph and correlation analysis. The results of this study were as follows. First, the result of the text mining analysis suggests that consumers respond more sensitively to negative issues than to positive issues. Second, the emotional analysis showed that companies' ethics issues (Enterprise 3 and 4) have a higher level of emotional continuity than that of food safety issues. It can be interpreted that the problem of ethical management has great influence on consumers' purchasing behavior. Finally, In the case of all negative food issues, the number of word frequency and emotional scores showed opposite trends. As a result of the correlation analysis, there was a correlation between word frequency and stock price in the case of all negative food issues and also between emotional scores and stock price. Recently, studies using big data analytics have been conducted in various fields. Therefore, based on this research, it is expected that studies using big data analytics will be done in the agricultural field.