• Title/Summary/Keyword: Agricultural Product Price forecasting

Search Result 6, Processing Time 0.018 seconds

Comparison of forecasting performance of time series models for the wholesale price of dried red peppers: focused on ARX and EGARCH

  • Lee, Hyungyoug;Hong, Seungjee;Yeo, Minsu
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.859-870
    • /
    • 2018
  • Dried red peppers are a staple agricultural product used in Korean cuisine and as such, are an important aspect of agricultural producers' income. Correctly forecasting both their supply and demand situations and price is very important in terms of the producers' income and consumer price stability. The primary objective of this study was to compare the performance of time series forecasting models for dried red peppers in Korea. In this study, three models (an autoregressive model with exogenous variables [ARX], AR-exponential generalized autoregressive conditional heteroscedasticity [EGARCH], and ARX-EGARCH) are presented for forecasting the wholesale price of dried red peppers. As a result of the analysis, it was shown that the ARX model and ARX-EGARCH model, each of which adopt both the rolling window and the adding approach and use the agricultural cooperatives price as the exogenous variable, showed a better forecasting performance compared to the autoregressive model (AR)-EGARCH model. Based on the estimation methods and results, there was no significant difference in the accuracy of the estimation between the rolling window and adding approach. In the case of dried red peppers, there is limitation in building the price forecasting models with a market-structured approach. In this regard, estimating a forecasting model using only price data and identifying the forecast performance can be expected to complement the current pricing forecast model which relies on market shipments.

A Multi-step Time Series Forecasting Model for Mid-to-Long Term Agricultural Price Prediction

  • Jonghyun, Park;Yeong-Woo, Lim;Do Hyun, Lim;Yunsung, Choi;Hyunchul, Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.201-207
    • /
    • 2023
  • In this paper, we propose an optimal model for mid to long-term price prediction of agricultural products using LGBM, MLP, LSTM, and GRU to compare and analyze the three strategies of the Multi-Step Time Series. The proposed model is designed to find the optimal combination between the models by selecting methods from various angles. Prior agricultural product price prediction studies have mainly adopted traditional econometric models such as ARIMA and LSTM-type models. In contrast, agricultural product price prediction studies related to Multi-Step Time Series were minimal. In this study, the experiment was conducted by dividing it into two periods according to the degree of volatility of agricultural product prices. As a result of the mid-to-long-term price prediction of three strategies, namely direct, hybrid, and multiple outputs, the hybrid approach showed relatively superior performance. This study academically and practically contributes to mid-to-long term daily price prediction by proposing an effective alternative.

Price Forecasting on a Large Scale Data Set using Time Series and Neural Network Models

  • Preetha, KG;Remesh Babu, KR;Sangeetha, U;Thomas, Rinta Susan;Saigopika, Saigopika;Walter, Shalon;Thomas, Swapna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3923-3942
    • /
    • 2022
  • Environment, price, regulation, and other factors influence the price of agricultural products, which is a social signal of product supply and demand. The price of many agricultural products fluctuates greatly due to the asymmetry between production and marketing details. Horticultural goods are particularly price sensitive because they cannot be stored for long periods of time. It is very important and helpful to forecast the price of horticultural products which is crucial in designing a cropping plan. The proposed method guides the farmers in agricultural product production and harvesting plans. Farmers can benefit from long-term forecasting since it helps them plan their planting and harvesting schedules. Customers can also profit from daily average price estimates for the short term. This paper study the time series models such as ARIMA, SARIMA, and neural network models such as BPN, LSTM and are used for wheat cost prediction in India. A large scale available data set is collected and tested. The results shows that since ARIMA and SARIMA models are well suited for small-scale, continuous, and periodic data, the BPN and LSTM provide more accurate and faster results for predicting well weekly and monthly trends of price fluctuation.

Forecasting Prices of Major Agricultural Products by Temperature and Precipitation (기온과 강수량에 따른 주요 농산물 가격 예측)

  • Kun-Hee Han;Won-Shik Na
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • In this paper, we analyzed the impact of temperature and precipitation on agricultural product prices and predicted the prices of major agricultural products using TensorFlow. As a result of the analysis, the rise in temperature and precipitation had a significant effect on the rise in prices of cabbage, radish, green onion, lettuce, and onion. In particular, prices rose sharply when temperature and precipitation increased simultaneously. The prediction model was useful in predicting agricultural product price changes due to climate change. Through this, agricultural producers and consumers can prepare for climate change and prepare response strategies to price fluctuations. The paper can contribute to understanding the impact of climate change on agricultural product prices and exploring ways to increase the stability and sustainability of agricultural product markets. In addition, it provides important data to increase agricultural sustainability and ensure economic stability in the era of climate change. The research results will also provide useful insights to policy makers and can contribute to establishing effective agricultural policies in response to climate change.

A Design and Implement of Efficient Agricultural Product Price Prediction Model

  • Im, Jung-Ju;Kim, Tae-Wan;Lim, Ji-Seoup;Kim, Jun-Ho;Yoo, Tae-Yong;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.29-36
    • /
    • 2022
  • In this paper, we propose an efficient agricultural products price prediction model based on dataset which provided in DACON. This model is XGBoost and CatBoost, and as an algorithm of the Gradient Boosting series, the average accuracy and execution time are superior to the existing Logistic Regression and Random Forest. Based on these advantages, we design a machine learning model that predicts prices 1 week, 2 weeks, and 4 weeks from the previous prices of agricultural products. The XGBoost model can derive the best performance by adjusting hyperparameters using the XGBoost Regressor library, which is a regression model. The implemented model is verified using the API provided by DACON, and performance evaluation is performed for each model. Because XGBoost conducts its own overfitting regulation, it derives excellent performance despite a small dataset, but it was found that the performance was lower than LGBM in terms of temporal performance such as learning time and prediction time.

A study on the estimation of onion's bulb weight using multi-level model (다층모형을 활용한 양파 구중 추정 연구)

  • Kim, Junki;Choi, Seung-cheon;Kim, Jaehwi;Seo, Hong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.763-776
    • /
    • 2020
  • Onions show severe volatility in production and price because crop conditions highly depend on the weather. The government has designated onions as a sensitive agricultural product, and prepared various measures to stabilize the supply and demand. First of all, preemptive and reliable information on predicting onion production is essential to implement appropriate and effective measures. This study aims to contribute to improving the accuracy of production forecasting by developing a model to estimate the final weight of onions bulb. For the analysis, multi-level model is used to reflect the hierarchical data characteristics consisting of above-ground growth data in individual units and meteorological data in parcel units. The result shows that as the number of leaf, stem diameter, and plant height in early May increase, the bulb weight increases. The amount of precipitation as well as the number of days beyond a certain temperature inhibiting carbon assimilation have negative effects on bulb weight, However, the daily range of temperature and more precipitation near the harvest season are statistically significant as positive effects. Also, it is confirmed that the fitness and explanatory power of the model is improved by considering the interaction terms between level-1 and level-2 variables.