• 제목/요약/키워드: Agresti-Coull interval

검색결과 12건 처리시간 0.016초

오분류된 이진자료에서 Agresti-Coull유형의 신뢰구간에 대한 이론적 고찰 (Theoretical Considerations for the Agresti-Coull Type Confidence Interval in Misclassified Binary Data)

  • 이승천
    • Communications for Statistical Applications and Methods
    • /
    • 제18권4호
    • /
    • pp.445-455
    • /
    • 2011
  • 표본추출에서 오분류된 이진자료는 흔히 발생될 수 있는 현실적인 문제이지만 통계적 방법론은 상대적으로 제한적이라고 할 수 있다. 특히, 모비율의 구간추정 문제는 고전적인 Wald 방법에 의존하고 있었다. 그러나 최근 이승천과 최병수 (2009)에서 Agresti-Coull 방법을 적용하고 새로운 구간추정 방법을 제시하였으며, 수치적인 방법에 의해 Agresti-Coull 신뢰구간의 효율성을 주장하였다. 본 연구에서는 오분류된 이진자료에 대한 베이지안 모형을 다루었으며, 베이지안 모형이 Agresti-Coull 신뢰구간의 이론적 배경이 될 수 있는지 살펴 보았다.

시스템의 확률 값 시험을 위한 신뢰구간 비교 분석 (Comparison of confidence intervals for testing probabilities of a system)

  • 황익순
    • 한국전자통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.435-443
    • /
    • 2010
  • 확률적 특성을 가지는 시스템의 시험을 위해서는 시험 입력을 일정 횟수만큼 반복하여 제공하고 관찰된 데이터를 기반으로 판정이 내려져야 한다. 구간 추정 기법을 이용하여 관찰된 데이터로부터 확률 값이 올바른지 여부를 판단할 수 있으며, 이 때 적절한 신뢰구간의 선택은 시험의 품질을 결정하는 중요한 요인이 된다. 본 논문에서는 다양한 크기의 표본에 대해 대표적인 구간 추정 기법인 Wald 신뢰구간과 Agresti-Coull 신뢰구간을 비교 분석한다. 각 신뢰구간이 확률 값 시험에 사용되었을 경우 올바른 구현 제품이 시험을 통과할 확률과 잘못된 구현제품이 시험을 통과하지 못할 확률을 기반으로 비교 분석을 수행하며, 확률 값이 올바른지를 판단하기 위한 양측검정뿐만 아니라 확률 값이 기준 확률 이상인지 여부를 판단하기 위한 단측검정을 사용하는 경우에 대해서도 비교 분석을 수행한다. 비교 분석 결과 양측검정의 경우 Agresti-Coull 신뢰구간을 사용할 것을 추천하며, 단측검정의 경우 큰 크기의 표본에 대해서는 Agresti-Coull 신뢰구간을, 적은 크기의 표본에 대해서는 Wald 신뢰구간 또는 Agresti-Coull 신뢰구간을 선택적으로 사용할 것을 추천한다.

베이지안 접근에 의한 모비율 선형함수의 신뢰구간 (Confidence Intervals for a Linear Function of Binomial Proportions Based on a Bayesian Approach)

  • 이승천
    • 응용통계연구
    • /
    • 제20권2호
    • /
    • pp.257-266
    • /
    • 2007
  • 모비율에 대한 신뢰구간의 구축에 있어 정규근사에 의한 Wald 신뢰구간이 표준으로 인식되어 왔으나, 최근 여러 학자들에 의해 Wald 신뢰구간은 근사성에서 심각한 문제가 있다는 것이 밝혀지고 있어 Agresti와 Coull(1998)에 의해 제안된 방법이 새로운 표준이 되어 가고 있다. Agresti-Coull 방법은 간편하면서도 근사성 문제를 획기적으로 개선하였으나 모비율에 대한 여러 가지 문제에서 보수적인 신뢰구간을 제시하고 있다. 본 연구에서는 베이지안 접근 방법에 의해 Agresti-Coull 방법의 보수성을 개선한 모비율 선형 함수의 신뢰구간을 제시한다.

AN IMPROVED CONFIDENCE INTERVAL FOR THE POPULATION PROPORTION IN A DOUBLE SAMPLING SCHEME SUBJECT TO FALSE-POSITIVE MISCLASSIFICATION

  • Lee, Seung-Chun
    • Journal of the Korean Statistical Society
    • /
    • 제36권2호
    • /
    • pp.275-284
    • /
    • 2007
  • Confidence intervals for the population proportion in a double sampling scheme subject to false-positive misclassification are considered. The confidence intervals are obtained by applying Agresti and Coull's approach, so-called "adding two-failures and two successes". They are compared in terms of coverage probabilities and expected widths with the Wald interval and the confidence interval given by Boese et al. (2006). The latter one is a test-based confidence interval and is known to have good properties. It is shown that the Agresti and Coull's approach provides a relatively simple but effective confidence interval.

이항 비율의 가중 POLYA POSTERIOR 구간추정 (Interval Estimation for a Binomial Proportion Based on Weighted Polya Posterior)

  • 이승천
    • 응용통계연구
    • /
    • 제18권3호
    • /
    • pp.607-615
    • /
    • 2005
  • 최근 여러 학자들에 의해 이항 비율의 구간 추정에 많이 사용되고 있는 Wald 신뢰구 간의 문제점이 재조명되고 있고, 이에 대한 대안으로 이항 비율의 새로운 신뢰구간들이 발표되고 있다. 본 논문에서는 가중 Polya posterior를 이용한 베이지안 구간추정을 구하였다. 이 구간추정은 이항분포의 공액분포인 베타 사전분포에서 구한 전통적인 베이지안 구간추정과 같으나 추정의 편의를 위하여 정규근사에 의한 신뢰구간을 구할 때, 표본크기가 크면 실제적으로 Argresti와 Coull (1998)의 신뢰구간과도 일치하였다. 또 새로운 신뢰구간은 표본크기가 작은 경우와 비율이 극히 작은 경우에도 매우 유용한 신뢰구간이 된다는 것을 살펴보았다.

이중표본에서 모비율의 구간추정 (Interval Estimation of Population Proportion in a Double Sampling Scheme)

  • 이승천;최병수
    • 응용통계연구
    • /
    • 제22권6호
    • /
    • pp.1289-1300
    • /
    • 2009
  • 표본추출 비용의 절감을 위해 흔히 사용되는 이중표본추출방법은 대부분의 표본들이 2종류의 오류에 의해 오염이 되어 있어 통계적 분석이 상대적으로 용이하지 않다. 특히, 비율의 추론을 위한 중요한 분석 도구인 구간추정은 현재까지 우도추정량의 정규근사에 의존하는 Wald 방법만이 알려져 있으나 Wald 신뢰구간은 포함확률의 근사성 등에서 많은 문제가 있다는 것이 여러 연구에서 확인되고 있다. 본 연구에서는 이중표본추출에서 Wald 신뢰구간의 문제점을 파악하고 이에 대한 대안으로 Agresti-Coull 유형의 신뢰구간을 제시한다.

이항자료에 대한 예측구간 (On Prediction Intervals for Binomial Data)

  • 류제복
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.943-952
    • /
    • 2013
  • 신뢰구간 추정에 널리 사용되고 있는 Wald, Agresti-Coull, 그리고 베이지안 방법인 Jeffrey와 Bayes-Laplace를 예측구간에 적용하였다. 네 가지 방법의 수치적 비교를 위해서 포함확률, 평균포함확률, 평균제곱오차의 제곱근, 그리고 평균기대폭을 사용하였다. 비교결과 Wald 방법은 신뢰구간에서와 마찬가지로 예측구간에서도 바람직하지 않았고 신뢰구간에서 선호되던 Agresti-Coull 방법은 예측구간에서는 너무 보수적이라 적절치 않다. 반면에 Jeffrey와 Bayes-Laplace 방법은 적절하였고, 특히 Jeffrey 방법은 신뢰구간의 경우에서와 마찬가지로 예측구간에서도 바람직하였다.

이항자료에 대한 예측구간 (On prediction intervals for binomial data)

  • 류제복
    • 응용통계연구
    • /
    • 제34권4호
    • /
    • pp.579-588
    • /
    • 2021
  • 신뢰구간 추정에 널리 사용되고 있는 Wald, Agresti-Coull, 그리고 베이지안 방법인 Jeffrey와 Bayes-Laplace를 예측구간에 적용하였다. 네 가지 방법의 수치적 비교를 위해서 포함확률, 평균포함확률, 평균제곱오차의 제곱근, 그리고 평균기대폭을 사용하였다. 비교결과 Wald 방법은 신뢰구간에서와 마찬가지로 예측구간에서도 바람직하지 않았고 신뢰구간에서 선호되던 Agresti-Coull 방법은 예측구간에서는 너무 보수적이라 적절치 않다. 반면에 Jeffrey와 Bayes-Laplace 방법은 적절하였고, 특히 Jeffrey 방법은 신뢰구간의 경우에서와 마찬가지로 예측구간에서도 바람직하였다.

The Role of Artificial Observations in Testing for the Difference of Proportions in Misclassified Binary Data

  • Lee, Seung-Chun
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.513-520
    • /
    • 2012
  • An Agresti-Coull type test is considered for the difference of binomial proportions in two doubly sampled data subject to false-positive error. The performance of the test is compared with the likelihood-based tests. It is shown that the Agresti-Coull test has many desirable properties in that it can approximate the nominal significance level with compatible power performance.

Confidence Intervals for a Proportion in Finite Population Sampling

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.501-509
    • /
    • 2009
  • Recently the interval estimation of binomial proportions is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the well-known Wald confidence interval. Various alternatives have been proposed. Among them, the Agresti-Coull confidence interval, the Wilson confidence interval and the Bayes confidence interval resulting from the noninformative Jefferys prior were recommended by Brown et al. (2001). However, unlike the binomial distribution case, little is known about the properties of the confidence intervals in finite population sampling. In this note, the property of confidence intervals is investigated in anile population sampling.