• 제목/요약/키워드: Agonist muscle

Search Result 128, Processing Time 0.024 seconds

Efficient Exercise Volume Analysis through Number of Repetitions and EMG Response of Agonist Muscle During the Bench Press

  • Kim, Ki Hong
    • Medical Lasers
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2021
  • Background and Objectives In designing a resistance exercise program, intensity, rest, and exercise volume are important. Many studies have been conducted to find the most suitable resistance exercise program incorporating the above, and in particular, many prior studies have been conducted on intensity. This study attempted to determine the effective volume of exercise by analyzing the number of repetitions performed at intensities of 65% one-repetition maximum (1RM) and 75% 1RM during the bench press exercise, and the electromyography (EMG) response of the agonist muscle. Materials and Methods Eight males in their 20s were selected as study subjects and they performed five sets of bench presses at two levels of intensity (65% 1RM, 75% 1RM). The following results were obtained by measuring the number of repetitions and the EMG response according to the exercise intensity and sets during the workout. Results First, the number of repetitions showed a sharp drop from the first set to the third set at 65% 1RM intensity and showed no change in the fourth and fifth sets. At 75% 1RM intensity, the intensity of hypertrophy showed a gradual decrease from the first set to the fifth set. Second, at 75% 1RM exercise intensity, the pectoralis major, anterior deltoid and triceps brachii showed high muscle activity, and the activity of the anterior deltoid continued to increase from the first set to the fourth set at 65% 1RM intensity, and from the first set to the fifth set at 75% 1RM. Conclusion It was found that during the bench press exercise, three minutes of rest at 75% 1RM intensity, five sets of five sets, one minute rest at 65% 1RM intensity, and three sets of the exercise were effective.

Impact of Concurrent Inspiratory Muscle Training and Tape on Inspiratory Muscle Strength, Endurance and Pulmonary Function (들숨근 훈련과 테이핑 동시적용이 호흡의 근력, 지구력, 폐기능 향상에 미치는 영향)

  • Lee, Minsoo;Kim, Myungchul;Ahn, Chungjoa
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.2 no.3
    • /
    • pp.65-73
    • /
    • 2014
  • Purpose: The purpose of this study was to identify the effect of a kinesio tape on inspiratory muscle training(IMT) to improve muscle strength, endurance and pulmonary function. Methods: Healthy 20 males were divided into IMT group (control group) and IMT with tape group (experimental group). The same IMT program was applied to both groups using the Respifit S for four weeks, three times a week, a total 12 times. To exprimental group, kinesio tape was applied on the inspiratory agonist diaphragm and the accessory inspiratory muscle scalene, sternocleidomastoid, pectoralis minor. The inspiratory pulmonary muscle strength was measured by the maximal inspiratory pressure (PI max) and minute volume (MV) using the Respifit S and the pulmonary function were measured peak expiratory flow (PEF), forced vital capacity (FVC), forced expiratory volume in 1sec (FEV1), FEV1/FVC using the Spirometer and compared before and after. Results: Results showed that the PI max in the two groups increased significantly and experimental group increased more effectively than that of control group. However, only MV showed a significant increase in experimental group but was not significantly different between the two groups. PEF and FEV1/FVC are significantly increased in both groups, but they did not make much difference between two groups, and the FVC for the two groups did not increase significantly. FEV1 increased significantly only with control group, but did not make a difference with experimental group. Conclusion: These result show that the PI max value for experimental group increased significantly than that of control group. Therefore kinesio tape maximizes inspiratory muscle exercise effect on muscle strength improvement. However, because of the short experimental period and difficulty in subject control, increase values of the others did not show a significant difference. In other words, kinesio tape did not show maximizing the inspiratory muscle exercise effect to improve endurance and pulmonary function.

Existence of Cholinergic and Purinergic Receptor on the Detrusor Muscle of Rat Urinary Bladder (흰쥐 적출 배뇨근에서 콜린성 및 퓨린성 수용체의 존재)

  • Choi, Tae-Su;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.8 no.2
    • /
    • pp.138-149
    • /
    • 1991
  • This study was aimed at investigation of the stimulatory innervations on the rat urinary bladder. Detrusor muscle strips of 15 mm long were suspended in isolated muscle chambers containing 1 ml of PSS maintained at $37^{\circ}C$ and aerated with 95% $O_2/5%CO_2$. Isometric myography was perfomed, and the results were as followings : Muscle strips showed "on-contraction" by electric field stimulation (EFS) frequency-dependently. The EFS-induced contraction was not affected by hexamethonium, a ganglion blocker, but abolished, by tetrodotoxin, a nerve conduction blocker. Physostigmine, a cholinesterase inhibitor enhanced the EFS-induced contraction which was inhibited by hemicholinium, an inhibitor of choline uptake at the cholinergic nerve ending. Such an EFS-induced contraction was antagonized by atropine only partially, and the atropine-resistant portion was completely abolished by the desensitization of purinergic receptors by prolonged incubatin of the strips in the presence of high concentratin of ATP. Bethanechol, a cholinergic agonist, elicited concentration-dependent contraction. Adenosine triphosphate (ATP), a purinergic agonist, induced a weak but concentration-dependent contraction of short duration. Bethanechol-induced contraction was not affected by ATP-desensitization, and ATP-induced contraction was not affected by tetrodotoxin. These results suggest that there are at least two main stimulatory components of innervations in the detrusor muscle, cholinergic muscarinic and purinergic ; and those receptors are independent each other.

  • PDF

The agonistic action of URO-K10 on Kv7.4 and 7.5 channels is attenuated by co-expression of KCNE4 ancillary subunit

  • Lee, Jung Eun;Park, Christine Haewon;Kang, Hana;Ko, Juyeon;Cho, Suhan;Woo, JooHan;Chae, Mee Ree;Lee, Sung Won;Kim, Sung Joon;Kim, Jinsung;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.503-516
    • /
    • 2020
  • KCNQ family constitutes slowly-activating potassium channels among voltage-gated potassium channel superfamily. Recent studies suggested that KCNQ4 and 5 channels are abundantly expressed in smooth muscle cells, especially in lower urinary tract including corpus cavernosum and that both channels can exert membrane stabilizing effect in the tissues. In this article, we examined the electrophysiological characteristics of overexpressed KCNQ4, 5 channels in HEK293 cells with recently developed KCNQ-specific agonist. With submicromolar EC50, the drug not only increased the open probability of KCNQ4 channel but also increased slope conductance of the channel. The overall effect of the drug in whole-cell configuration was to increase maximal whole-cell conductance, to prolongate the activation process, and left-shift of the activation curve. The agonistic action of the drug, however, was highly attenuated by the co-expression of one of the β ancillary subunits of KCNQ family, KCNE4. Strong in vitro interactions between KCNQ4, 5 and KCNE4 were found through Foster Resonance Energy Transfer and co-immunoprecipitation. Although the expression levels of both KCNQ4 and KCNE4 are high in mesenteric arterial smooth muscle cells, we found that 1 μM of the agonist was sufficient to almost completely relax phenylephrine-induced contraction of the muscle strip. Significant expression of KCNQ4 and KCNE4 in corpus cavernosum together with high tonic contractility of the tissue grants highly promising relaxational effect of the KCNQ-specific agonist in the tissue.

Relaxative Effect of Transmural Nerve Stimulation via ${\beta}$-adrenergic Nerve on the Isolated Uterine Smooth Muscle Motility of Pigs (돼지 적출 자궁 평활근의 운동성에 있어서 transmural nerve stimulation에 대한 ${\beta}$-adrenergic 신경의 이완작용)

  • Kim, Joo-Heon;Jeon, Jae-Cheul;Rho, Gyu-Jin;Hong, Yong-Geun;Choe, Sang-Yong
    • Journal of Veterinary Clinics
    • /
    • v.23 no.4
    • /
    • pp.421-426
    • /
    • 2006
  • The effects of transmural nerve stimulation induced releasing neurotransmitters on the changes of swine uterine smooth muscle motility were examined by polygraph through isometric force transducer. The frequency dependent relaxation and rebound contraction were revealed on precontraction with histamine by transmural nerve stimulation. The rebound contraction by transmural nerve stimulation was inhibited by nonselective ${\alpha}$-adrenergic receptor antagonist, phentolamine, and the relaxation by transmural nerve stimulation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol. The relaxation induced by nonselective ${\beta}$-adrenergic receptor agonist, isoproterenol on precontraction with histamine were the dose dependent manner and this relaxation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol in isolated uterine smooth muscle of pig. These results suggest that endogenous neurotransmitters on smooth muscle relaxation was influenced by ${\beta}$-adrenergic receptor in swine.

The Effects of Pilates Mat Exercises on Elderly Women's Basic Physical Strength and Lumbar Muscle Strength

  • Yoo, Yong Kwon;Song, Min Sun;Goo, Kyung Mi;Lee, Byung Hoon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.4 no.2
    • /
    • pp.605-610
    • /
    • 2013
  • The purpose of this study is to examine the changes on lumbar muscle strength in relation to 12-week pilates mat exercise of elderly women. The participants are chosen for 17 people who is an experimental group and 14 people who is an comparison group who except wastage and pilates mat exercise program was gradually intensify applied three times a week, during 12 weeks. The peak torque of flexion was increased(p<.01) and the difference of ratio of agonist to antagonist was decreased(p<.001). The total work of flexion and extension had significant increased(p<.001) at $120^{\circ}/sec$. As a result of all these, it was judged as positive effect for body composition, basal physical fitness and lumbar muscle strength after pilates mat exercise in 12 weeks. These positive effects showed that pilates mat exercise could got conclusions that mitigated the musculoskelctal disorders, slow down the progress of disorders, helped as a functions of physical.

The Involvement of Protein Kinase C and Tyrosine Kinase in Vanadate-induced Contraction

  • Sim, Sang-Soo;Kim, Chang-Jong
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.315-319
    • /
    • 1998
  • Gastric smooth muscle of cats was used to investigate the involvement of protein kinase in vanadate-induced contraction. Vanadate caused a contraction of cat gastric smooth muscle in a dose-dependent manner. Vanadate-induced contraction was totally inhibited by 2 mM EGTA and 1.5 mM $LACI_3$ and significantly inhibited by $10\mu$M verapamil and $1\mu$M nifedipine, suggesting that vanadate-induced contraction is dependent on the extracellular $Ca^{2+}$ concentration, and the influx of extracellular $Ca^{2+}$ was mediated through voltage-dependent $Ca^{2+}$ channel. Both protein kinase C inhibitor and tyrosine kinase inhibitor significantly inhibited the vanadate-induced contraction and the combined inhibitory effect of two protein kinase inhibitors was greater than that of each one. But calmodulin antagonists did not have any influence on the vanadate-induced contraction. On the other hand, both forskolin ($1\mu$M) and sodium nitroprusside ($1\mu$M) significantly inhibited vanadate-induced contraction. Therefore, these results suggest that both protein kinase C and tyrosino kinase are involved in the vanadate-induced contraction which required the influx of extracellular $Ca^{2+}$ in cat gastric smooth muscle, and that the contractile mechanism of vanadate may be different from that of agonist binding to its specific receptor.

  • PDF

Effect of Baclofen on the Cholinergic Nerve Stimulation in Isolated Rat Detrusor (흰쥐의 적출배뇨근에서 baclofen의 콜린성신경 억제작용)

  • Lee, Kwang-Youn;Lee, Keun-Mi;Choi, Eun-Mee;Choi, Hyoung-Chul;Ha, Jeoung-Hee;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.2
    • /
    • pp.246-259
    • /
    • 1995
  • This study aimed to investigate the mechanism of action of baclofen on the detrusor muscle isolated from rat. Rats (Sprague-Dawley) were sacrificed by decapitation and exsanguination. Horizontal muscle strips of $2mm{\times}15mm$ were prepared for isometric myography in isolated muscle chamber bubbled with 95% / 5%-$O_2$ / $CO_2$ at $37^{\circ}C$, and the pH was maintained at 7.4. Detrusor strips contracted responding to the electrical field stimulation (EFS) by 2 Hz, 20 msec, monophasic square wave of 60 VDC. The initial peak of EFS-Induced contraction was tended to be suppresed by ${\alpha},{\beta}$-methylene-adenosine 5'-triphosphate (mATP), a partial agonist of purinergic receptor, and baclofen, a $GABA_B$ receptor agonist (statistically nonsignificant). The late sustained contraction by EFS was suppressed significantly (p < 0.05) by additions of atropione, a cholinergic muscarinic receptor antagonist and baclofen. The adenosine 5'-triphosphate-induced contraction was completely abolished by mA TP but not by baclofen. In the presence of atropine, the subsequent addition of acetylcholine could not contract the muscle strips: but the addition of acetylcholine in the presence of baclofen evoked a contraction to a remarkable extent. These results suggest that in the condition of present study, the cholinergic innervation may play a more important role than the purinergic one, and baclofen suppresses the contractility of rat detrusor by the stimulation of the $GABA_B$ receptors to inhibit the release of neurotransmitter from the cholinergic nerve ending.

  • PDF

The change of muscle action potential and superficial temperature of spastic upper extremity in a patient with cerebral palsy by the water temperature (수온이 뇌성마비 환자의 상지 경련근의 표재 온도와 근 활동전위에 미치는 영향)

  • Seo Sam-Ki;Lee Jeong-Woo;Han Dong-Wook
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.455-465
    • /
    • 2003
  • The purpose of this study was to describe the alteration of muscle action potential of spastic upper extremity in a patient with cerebral palsy by the water temperature. We used seven patients with cerebral palsy. Participants classified according to each group in $29^{\circ}C,\;35^{\circ}C$ by the water temperature. All subjects participated 2 session, which at least 1 week between session. The test was measured continuously pre test, post-test by thermometer and surface EMG. The following results were obtained; 1. In changes of surface temperature, wrist flexor and extensor were significantly decreased in $29^{\circ}C$ (p<0.001) group but were significantly increased $35^{\circ}C$ group(p<0.01). 2. In changes of surface temperature, wrist flexor and extensor were significantly differenced between $29^{\circ}C$ and $35^{\circ}C$ group(p<0.001). 3. In changes of muscle action potential, wrist extension antagonist were significantly increased in $29^{\circ}C$ group(p<0.05). 4. In changes of muscle action potential, wrist flexion agonist were more significantly increased in $29^{\circ}C$ group(p<0.01). 5. In changes of muscle action potential, wrist extension antagonist were significantly differenced between $29^{\circ}C$ and $35^{\circ}C$ group(p<0.05). These results lead us to the conclusion that changes of muscle action potential of spastic upper extremity in a patient with cerebral palsy were influenced by the water temperature. Therefore, a further direction of this study will be to provide more evidence that a moderate water temperature have an effect on muscle tone in a patient with cerebral palsy.

  • PDF

Involvement of Spontaneously Formed Cyclic Nucleotides in Cat Gastric Muscle Relaxation

  • Sim, Sang-Soo;Baek, Hye-Jung;Rhie, Duck-Joo;Yoon, Shin-Hee;Hahn, Sang-June;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.275-282
    • /
    • 1999
  • Muscle strips and muscle cells from cat stomach were used to investigate whether spontaneously formed cyclic nucleotides were involved in the inhibition of gastric smooth muscle contraction. A phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), increased the levels of both cyclic GMP (cGMP) and cyclic AMP (cAMP) in resting state cells, while decreasing acetylcholine-induced muscle contraction. Under the influence of IBMX, SQ22536, an adenylyl cyclase inhibitor and methylene blue, a guanylyl cyclase inhibitor completely blocked increases in cAMP and cGMP respectively, without any effect on contraction. However, the combination of SQ22536 and methylene blue completely blocked increases in both cAMP and cGMP levels and stimulated contractions markedly even in the presence of IBMX. Muscle contraction inhibitors such as isoprenaline, vasoactive intestinal polypeptide and sodium nitroprusside also appeared to increase cyclic nucleotide levels which decreased contraction. Which nucleotide increased the most was dependent on the agonist used. Therefore, irrespective of the cyclic nucleotide class, the spontaneous formation of cyclic nucleotides should be considered in evaluating the mechanism of gastric smooth muscle relaxation.

  • PDF