• Title/Summary/Keyword: Aging Resistance

Search Result 426, Processing Time 0.024 seconds

Mechanical and Electrochemical Properties of Plasma Electrolytic Oxide Coatings on Aged Mg-Al alloy (플라즈마 전해 산화처리한 시효경화 Mg-Al 합금 피막의 기계적 및 전기화학적 특성)

  • Chang, Si-Young;Kim, Ye-Lim;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.648-653
    • /
    • 2007
  • Plasma electrolytic oxidation (PEO) treatment was performed on cast Mg-6 wt%Al alloy solution-treated at 693K for 16h and aged at 498K. The surface roughness, thickness, micro-hardness, wear and corrosion properties of coatings on solution-treated and aged Mg-6 wt%Al alloy were investigated. The coatings on aged Mg-6 wt%Al alloy had thinner layer and lower micro-hardness and wear resistance than the solution-treated Mg-6 wt%Al alloy. As the aging time increased, the thickness of coatings decreased while the surface roughness was almost no changed. In addition, the micro-hardness and wear property of coatings decreased with increasing the aging time unlike the uncoated Mg-6 wt%Al alloy showing the peak micro-hardness and the best wear property after aging for 16 h. However, the coatings on Mg-6 wt%Al alloy peak-aged for 16h revealed the best corrosion resistance in 3.5% NaCl solution, which was explained based on the microstructural characteristics.

Effects of Co-agent Type and Content on Curing Characteristics and Mechanical Properties of HNBR Composite

  • Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Currently, peroxide cure is a widely used cure system for rubber materials. To improve its effectivity, co-agents are used to enhance the peroxide efficiency and mechanical properties of rubber materials. Co-agents are multifunctional organic compounds that are highly reactive towards free radicals. These co-agents provide higher cross-link densities for a given peroxide concentration and improve the mechanical properties of peroxide-cured rubber composites. In this study, trimethylolpropane trimethacrylate (TMPTMA) and high vinyl 1,2-polybutadiene (HVPBD) were used as co-agents. In order to obtain a concentration that achieves a favorable balance between mechanical properties and co-agent concentration, this research investigated the effects of co-agent content on the curing characteristics, chemical structures, and mechanical properties of HNBR composites. Additionally, the heat aging properties and compression sets of HNBR composites were investigated. Based on the results, we found that the HNBR composites with TMPTMA co-agents exhibited higher Shore A hardness and 10% modulus and better heat aging resistance and compression set than that of the HVPBD co-agent. The heat aging resistance and compression set deteriorated with increasing HVPBD content.

Nondestructive Evaluation for Mechanical Degradation of Ultrasuper-Critical Heat-Resistance Steel by Reversible Permeability (가역투자율를 이용한 초초임계압 내열강의 기계적 열화에 관한 비파괴평가)

  • Ahn, SeongBin;Kim, JaeJin;Seo, DongMin;Kim, ChungSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.46-52
    • /
    • 2018
  • Nondestructive evaluation for mechanical degradation of ultrasuper-critical (USC) heat-resistance steel, which is attractive to the next generation of power plants is studied by magnetic reversible permeability. The interrelationship between reversible permeability and high-temperature mechanical degradation has been investigated by precise measurement of permeability nondestructively. Also, the effects of microstructural variation on reversible permeability are discussed. Isothermal aging was observed to coarsen the tempered carbides ($Cr_{23}C_6$), generated the intermetallic phases ($Fe_2W$), and grow rapidly during aging. The dislocation density also decreases steeply within lath interior. The peak to peak interval (PPI) of reversible permeability profile decreased drastically during the initial 500 h aging period, and was thereafter observed to decrease only slightly. The variation in PPI is closely related to the decrease in the number of pinning sites and the degradation in tensile strength.

A Comparison of the Failure Mechanism for High Power Converted White LEDs(3W) (고 출력 백색 변환용 LED(3W용)의 고장메커니즘 비교)

  • Yun, Yang-Gi;Jang, Jung-Sun
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • This paper presents a comparison of the failure mechanism for high power converted white LEDs(3W) with the commercially available YAG:Ce and silicate phosphor. We carry out the normal aging life test for 10,000 hours, the high temperature aging test for 8,000 hours, the high temperature and humidity aging test for 8,000 hours and the current aging testing for 5,000 hours. The optical and electrical parameters of LEDs were monitored, such as lumen, correlated color temperature (CCT), chromaticity coordinates(x, y), thermal resistance, I -V curve and spectrum intensity. The stress induced a luminous flux decay on LED in all experiments and causes a failure. So we try to find out what's a main failure mechanism for a high power LED.

Properties of Thermal Performance on Stator Coil of Traction Motor by Accelerated Test (견인전동기 고정자 코일의 열적 열화특성)

  • Park Hyun-June;Lee Chang-Moo;Lee Han-Min;Jang Dong-Uk
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.606-610
    • /
    • 2003
  • The 200 class insulation system which adopted to traction motor have excellent dielectric strength but weaken to thermal stress therefore deterioration phenomena analysis according to thermal stress is necessary. Accelerated thermal aging tests have been used to determine thermal reliability of stator coils used as traction motor in electric multiple unit. The conventional aging test is carried on according to IEC 60034-18-31 and IEEE Std. 275-1992. Variation in insulation resistance, P.I, capacitance, dielectric loss($tan{\delta}$) and partial discharge are measured during the aging cycle. Sample coils for traction motor were tested by accelerated aging test which composed of heat, vibration and moisture. Reliability and expected life were evaluated on the insulation system for traction motor.

  • PDF

Senotherapeutics and Their Molecular Mechanism for Improving Aging

  • Park, Jooho;Shin, Dong Wook
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.490-500
    • /
    • 2022
  • Aging is defined as physiological dysfunction of the body and a key risk factor for human diseases. During the aging process, cellular senescence occurs in response to various extrinsic and intrinsic factors such as radiation-induced DNA damage, the activation of oncogenes, and oxidative stress. These senescent cells accumulate in many tissues and exhibit diverse phenotypes, such as resistance to apoptosis, production of senescence-associated secretory phenotype, cellular flattening, and cellular hypertrophy. They also induce abnormal dysfunction of the microenvironment and damage neighboring cells, eventually causing harmful effects in the development of various chronic diseases such as diabetes, cancer, and neurodegenerative diseases. Thus, pharmacological interventions targeting senescent cells, called senotherapeutics, have been extensively studied. These senotherapeutics provide a novel strategy for extending the health span and improving age-related diseases. In this review, we discuss the current progress in understanding the molecular mechanisms of senotherapeutics and provide insights for developing senotherapeutics.

The Effects of Physical Aging of PSF/AS4 Laminate on Fatigue (PSE/AS4 복합재료의 가속노화가 피로강도에 미치는 영향)

  • Kim, Hyung-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.39-44
    • /
    • 2005
  • The effects of aging of PSF/AS4 laminates on fatigue was studied using the new energy release rate analysis. The analysis by the variational mechanics has been useful in providing fracture mechanics interpretation of matrix microcracking in cross-ply laminates. This paper describes the changes of the critical energy release rate (microcracking toughness) according to the aging period under fatigue loading. The master plot by modified Paris-law gives a characterization of a material system's resistance to microcrack formation. PSF $[0/90_{s}]_{s}$ laminates were aged at four different temperature based on the glass transition temperature for 0 to 60 days. At all temperatures, the toughness decreased with aging time. The decrease of the toughness at higher temperature was faster than at lower temperature. To assess the effects of aging on fatigue, the unaged laminates were compared with the laminates which had been aged for 60 days at 170$^{\circ}C$ near 180 $^{\circ}C$ t$_g$. The slope of dD/dN versus ${\Delta}G_m$. of the aged laminates was lower than that of the unaged laminates. There was a significant shift of the aged data to formation of microcracks at the lower values of ${\Delta}G_m$.

  • PDF

The Evaluation of Thermal Aging Characteristics in Insulating Paper for the Use of the Pole Transformers (가속열화 방법에 의한 주상변압기 절연물의 열열화 특성 평가)

  • Lee, Byung-Sung;Song, Il-Keun;Lee, Jae-Bong;Park, Dong-Bae;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.100-103
    • /
    • 2003
  • The primary insulation system used in an oil-filled transformer is kraft paper, wood, porcelain and oil. Modern transformers use paper that is chemically treated to improve its tensile strength properties and resistance to aging caused by immersion in oil. But these insulation papers are mainly aged to thermal stress. Over the course of the insulation paper and oil's life it is exposed to high temperatures, oxygen and water. Its interaction with the steel of the tank and core plus the copper and aluminium of the windings will eventually cause the chemical properties of the oil to decay. High temperature have an effect on mechanical strength of cellulous paper using the layer insulation. We made two aging cell in which thermal aging tests of insulation papers and mineral oil are conducted. It is measured dielectric strength, number of acid, moisture, etc. of insulation paper and oil aged in the aging cells.

  • PDF

Effects of Exercise on the Physiological Changes of Aging Skeletal Muscle (운동이 노화로 인한 골격근의 생리적 변화에 미치는 영향)

  • Song, Ju-Young;Kim, Jin-Sang
    • Physical Therapy Korea
    • /
    • v.5 no.1
    • /
    • pp.63-78
    • /
    • 1998
  • The decrease of muscle power and muscle size between twenties and seventies was about 30% and 40% respectively. The loss of muscle mass by aging resulted in the decrease of muscle power. The loss of muscle mass was due to the decrease of number of Type I fiber and Type II fiber and size of each muscle fiber. The aging skeletal muscle didn't show the loss of glycolysis capacity but showed 20% decrease of the oxidative enzymes and muscle vascularization. The vigorous endurance exercise training with graded intensity played a role in the vascular proliferation, increase of activity of oxidative enzymes and improvement of $VO_2$ max. The graded resistance exercise also played a role in the muscle hypertrophy and increase of muscle power, if it performed with adequate intensity and period. The exercise adaptation of aging skeletal muscle prevented it from sarcopenia, provided the activity of daily living with great effect and provided the aging related disease, that is Type II diabetes mellitus, arteriosclerosis, hypertension, osteoporosis and obesity, with great effect.

  • PDF

Evaluation of Strength Characteristics of HoneyComb Sandwitch Structure Due to the Repeated Curing Cycle in Repair Process (하니콤 샌드위치 구조물의 수리 시 반복 경화에 따른 강도 특성 평가)

  • 손영준;이기현;김국진;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.83-87
    • /
    • 2002
  • Aerospace industries are widely using honeycomb sandwich structures that it has high specific strength and stiffness, chemical material resistance and fatigue resistance. But, in repairing process of damaged areas, one of the problems is that delamination can be occurred in the sound areas during and/or after the exposure to the elevated curing temperature in case that the repair process is repeated. Therefore, this study was conducted Flatwise tensile, Drum peel and Long beam flexural strength tests to evaluate the degree of degradation of mechanical properties of the honeycomb sandwich structures by affecting thermal aging. As the results, the decrease of mechanical strength was observed at the specific specimen which is exposed over 50hrs at $127^{\circ}C$.

  • PDF