DOI QR코드

DOI QR Code

Senotherapeutics and Their Molecular Mechanism for Improving Aging

  • Park, Jooho (Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University) ;
  • Shin, Dong Wook (College of Biomedical and Health Science, Konkuk University)
  • Received : 2022.08.29
  • Accepted : 2022.09.27
  • Published : 2022.11.01

Abstract

Aging is defined as physiological dysfunction of the body and a key risk factor for human diseases. During the aging process, cellular senescence occurs in response to various extrinsic and intrinsic factors such as radiation-induced DNA damage, the activation of oncogenes, and oxidative stress. These senescent cells accumulate in many tissues and exhibit diverse phenotypes, such as resistance to apoptosis, production of senescence-associated secretory phenotype, cellular flattening, and cellular hypertrophy. They also induce abnormal dysfunction of the microenvironment and damage neighboring cells, eventually causing harmful effects in the development of various chronic diseases such as diabetes, cancer, and neurodegenerative diseases. Thus, pharmacological interventions targeting senescent cells, called senotherapeutics, have been extensively studied. These senotherapeutics provide a novel strategy for extending the health span and improving age-related diseases. In this review, we discuss the current progress in understanding the molecular mechanisms of senotherapeutics and provide insights for developing senotherapeutics.

Keywords

Acknowledgement

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-001) and the Ministry of Science and ICT (grants NRF-2020R1A2C1102831 and NRF-2022R1A4A3034038).

References

  1. Akbar, A. N. (2017) The convergence of senescence and nutrient sensing during lymphocyte ageing. Clin. Exp. Immunol. 187, 4-5. https://doi.org/10.1111/cei.12876
  2. Amor, C., Feucht, J., Leibold, J., Ho, Y. J., Zhu, C., Alonso-Curbelo, D., Mansilla-Soto, J., Boyer, J. A., Li, X., Giavridis, T., Kulick, A., Houlihan, S., Peerschke, E., Friedman, S. L., Ponomarev, V., Piersigilli, A., Sadelain, M. and Lowe, S. W. (2020) Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127-132. https://doi.org/10.1038/s41586-020-2403-9
  3. Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D. A., van der Pluijm, I., Essers, J., van Cappellen, W. A., van IJcken, W. F., Houtsmuller, A. B., Pothof, J., de Bruin, R. W. F., Madl, T., Hoeijmakers, J. H. J., Campisi, J. and de Keizer, P. L. J. (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132-147. e16. https://doi.org/10.1016/j.cell.2017.02.031
  4. Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., Saltness, R. A., Jeganathan, K. B., Verzosa, G. C., Pezeshki, A., Khazaie, K., Miller, J. D. and van Deursen, J. M. (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184-189. https://doi.org/10.1038/nature16932
  5. Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., Kirkland, J. L. and van Deursen, J. M. (2011) Clearance of p16Ink4a-positive senescent cells delays ageingassociated disorders. Nature 479, 232-236. https://doi.org/10.1038/nature10600
  6. Banerjee, K. and Resat, H. (2016) Constitutive activation of STAT3 in breast cancer cells: a review. Int. J. Cancer 138, 2570-2578. https://doi.org/10.1002/ijc.29923
  7. Bang, M., Ryu, O., Kim, D. G., Mabunga, D. F., Cho, K. S., Kim, Y., Han, S. H., Kwon, K. J. and Shin, C. Y. (2019) Tenovin-1 induces senescence and decreases wound-healing activity in cultured rat primary astrocytes. Biomol. Ther. (Seoul) 27, 283-289. https://doi.org/10.4062/biomolther.2018.107
  8. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. and Espeland, M. A. (2016) Metformin as a tool to target aging. Cell Metab. 23, 1060-1065. https://doi.org/10.1016/j.cmet.2016.05.011
  9. Birch, J. and Gil, J. (2020) Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565-1576. Borghesan, M., Hoogaars, W. M. H., Varela-Eirin, M., Talma, N. and https://doi.org/10.1101/gad.343129.120
  10. Demaria, M. (2020) A senescence-centric view of aging: implications for longevity and disease. Trends Cell Biol. 30, 777-791. https://doi.org/10.1016/j.tcb.2020.07.002
  11. Burton, D. G. A. and Stolzing, A. (2018) Cellular senescence: immunosurveillance and future immunotherapy. Ageing Res. Rev. 43, 17-25. https://doi.org/10.1016/j.arr.2018.02.001
  12. Campisi, J. (2013) Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685-705. https://doi.org/10.1146/annurev-physiol-030212-183653
  13. Chang, J., Wang, Y., Shao, L., Laberge, R. M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N. E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin-Burns, N., Krager, K., Ponnappan, U., HauerJensen, M., Meng, A. and Zhou, D. (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78-83. https://doi.org/10.1038/nm.4010
  14. Chen, M., Fu, Y., Wang, X., Wu, R., Su, D., Zhou, N. and Qi, Y. (2022) Metformin protects lens epithelial cells against senescence in a naturally aged mouse model. Cell Death Discov. 8, 8.
  15. Chiang, H. M., Chan, S. Y., Chu, Y. and Wen, K. C. (2015) Fisetin ameliorated photodamage by suppressing the mitogen-activated protein Kinase/Matrix metalloproteinase pathway and nuclear factor-kappaB pathways. J. Agric. Food Chem. 63, 4551-4560. https://doi.org/10.1021/jf502500t
  16. Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J. and van Deursen, J. M. (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472-477. https://doi.org/10.1126/science.aaf6659
  17. Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R. M., Marquess, D., Dananberg, J. and van Deursen, J. M. (2017) Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718-735. https://doi.org/10.1038/nrd.2017.116
  18. Cleary, J. M., Lima, C. M., Hurwitz, H. I., Montero, A. J., Franklin, C., Yang, J., Graham, A., Busman, T., Mabry, M., Holen, K., Shapiro, G. I. and Uronis, H. (2014) A phase I clinical trial of navitoclax, a targeted high-affinity Bcl-2 family inhibitor, in combination with gemcitabine in patients with solid tumors. Invest. New Drugs 32, 937-945. https://doi.org/10.1007/s10637-014-0110-9
  19. Coppe, J. P., Desprez, P. Y., Krtolica, A. and Campisi, J. (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
  20. Demaria, M., O'Leary, M. N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A. M., Alston, S., Academia, E. C., Kilmarx, S., Valdovinos, A., Wang, B., de Bruin, A., Kennedy, B. K., Melov, S., Zhou, D., Sharpless, N. E., Muss, H. and Campisi, J. (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165-176. https://doi.org/10.1158/2159-8290.CD-16-0241
  21. Di Mitri, D., Azevedo, R. I., Henson, S. M., Libri, V., Riddell, N. E., Macaulay, R., Kipling, D., Soares, M. V., Battistini, L. and Akbar, A. N. (2011) Reversible senescence in human CD4+CD45RA+CD27-memory T cells. J. Immunol. 187, 2093-2100. https://doi.org/10.4049/jimmunol.1100978
  22. Dinarello, C. A., Simon, A. and van der Meer, J. W. (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633-652. https://doi.org/10.1038/nrd3800
  23. Dutta Gupta, S. and Pan, C. H. (2020) Recent update on discovery and development of Hsp90 inhibitors as senolytic agents. Int. J. Biol. Macromol. 161, 1086-1098. https://doi.org/10.1016/j.ijbiomac.2020.06.115
  24. Fausti, F., Di Agostino, S., Cioce, M., Bielli, P., Sette, C., Pandolfi, P. P., Oren, M., Sudol, M., Strano, S. and Blandino, G. (2013) ATM kinase enables the functional axis of YAP, PML and p53 to ameliorate loss of Werner protein-mediated oncogenic senescence. Cell Death Differ. 20, 1498-1509. https://doi.org/10.1038/cdd.2013.101
  25. Ferrucci, L. and Fabbri, E. (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505-522. https://doi.org/10.1038/s41569-018-0064-2
  26. Fu, W., Ma, Q., Chen, L., Li, P., Zhang, M., Ramamoorthy, S., Nawaz, Z., Shimojima, T., Wang, H., Yang, Y., Shen, Z., Zhang, Y., Zhang, X., Nicosia, S. V., Zhang, Y., Pledger, J. W., Chen, J. and Bai, W. (2009) MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J. Biol. Chem. 284, 13987-14000. https://doi.org/10.1074/jbc.M901758200
  27. Fuhrmann-Stroissnigg, H., Ling, Y. Y., Zhao, J., McGowan, S. J., Zhu, Y., Brooks, R. W., Grassi, D., Gregg, S. Q., Stripay, J. L., Dorronsoro, A., Corbo, L., Tang, P., Bukata, C., Ring, N., Giacca, M., Li, X., Tchkonia, T., Kirkland, J. L., Niedernhofer, L. J. and Robbins, P. D. (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422. https://doi.org/10.1038/s41467-017-00314-z
  28. Fuhrmann-Stroissnigg, H., Niedernhofer, L. J. and Robbins, P. D. (2018) Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle 17, 1048-1055. https://doi.org/10.1080/15384101.2018.1475828
  29. Garrido, A. M., Kaistha, A., Uryga, A. K., Oc, S., Foote, K., Shah, A., Finigan, A., Figg, N., Dobnikar, L., Jorgensen, H. and Bennett, M. (2022) Efficacy and limitations of senolysis in atherosclerosis. Cardiovasc. Res. 118, 1713-1727. https://doi.org/10.1093/cvr/cvab208
  30. Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., Gil, J., Hara, E., Krizhanovsky, V., Jurk, D., Maier, A. B., Narita, M., Niedernhofer, L., Passos, J. F., Robbins, P. D., Schmitt, C. A., Sedivy, J., Vougas, K., von Zglinicki, T., Zhou, D., Serrano, M. and Demaria, M. (2019) Cellular senescence: defining a path forward. Cell 179, 813-827. https://doi.org/10.1016/j.cell.2019.10.005
  31. Harrison, C. N., Talpaz, M. and Mead, A. J. (2016) Ruxolitinib is effective in patients with intermediate-1 risk myelofibrosis: a summary of recent evidence. Leuk. Lymphoma 57, 2259-2267. https://doi.org/10.1080/10428194.2016.1195501
  32. He, S. and Sharpless, N. E. (2017) Senescence in health and disease. Cell 169, 1000-1011. https://doi.org/10.1016/j.cell.2017.05.015
  33. Henson, S. M., Lanna, A., Riddell, N. E., Franzese, O., Macaulay, R., Griffiths, S. J., Puleston, D. J., Watson, A. S., Simon, A. K., Tooze, S. A. and Akbar, A. N. (2014) p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J. Clin. Invest. 124, 4004-4016. https://doi.org/10.1172/JCI75051
  34. Hernandez-Segura, A., Nehme, J. and Demaria, M. (2018) Hallmarks of cellular senescence. Trends Cell Biol. 28, 436-453. https://doi.org/10.1016/j.tcb.2018.02.001
  35. Hoang, N. M. H., Kim, S., Nguyen, H. D., Kim, M., Kim, J., Kim, B. C., Park, D., Lee, S., Yu, B. P., Chung, H. Y. and Kim, M. S. (2021) Age-dependent sensitivity to the neurotoxic environmental metabolite, 1,2-diacetylbenzene. Biomol. Ther. (Seoul) 29, 399-409. https://doi.org/10.4062/biomolther.2020.208
  36. Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X. D., Gudas, J. M. and Bar-Eli, M. (2002) Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am. J. Pathol. 161, 125-134. https://doi.org/10.1016/S0002-9440(10)64164-8
  37. Jeon, O. H., Kim, C., Laberge, R. M., Demaria, M., Rathod, S., Vasserot, A. P., Chung, J. W., Kim, D. H., Poon, Y., David, N., Baker, D. J., van Deursen, J. M., Campisi, J. and Elisseeff, J. H. (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775-781. https://doi.org/10.1038/nm.4324
  38. Kang, H. T., Park, J. T., Choi, K., Kim, Y., Choi, H. J. C., Jung, C. W., Lee, Y. S. and Park, S. C. (2017) Chemical screening identifies ATM as a target for alleviating senescence. Nat. Chem. Biol. 13, 616-623. https://doi.org/10.1038/nchembio.2342
  39. Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., Epel, E. S., Franceschi, C., Lithgow, G. J., Morimoto, R. I., Pessin, J. E., Rando, T. A., Richardson, A., Schadt, E. E., Wyss-Coray, T. and Sierra, F. (2014) Geroscience: linking aging to chronic disease. Cell 159, 709-713. https://doi.org/10.1016/j.cell.2014.10.039
  40. Khan, N., Syed, D. N., Ahmad, N. and Mukhtar, H. (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid. Redox Signal. 19, 151-162. https://doi.org/10.1089/ars.2012.4901
  41. Kim, K. M., Noh, J. H., Bodogai, M., Martindale, J. L., Yang, X., Indig, F. E., Basu, S. K., Ohnuma, K., Morimoto, C., Johnson, P. F., Biragyn, A., Abdelmohsen, K. and Gorospe, M. (2017) Identification of senescent cell surface targetable protein DPP4. Genes Dev. 31, 1529-1534. https://doi.org/10.1101/gad.302570.117
  42. Kirkland, J. L. and Tchkonia, T. (2017) Cellular senescence: a translational perspective. EBioMedicine 21, 21-28. https://doi.org/10.1016/j.ebiom.2017.04.013
  43. Krimpenfort, P. and Berns, A. (2017) Rejuvenation by therapeutic elimination of senescent cells. Cell 169, 3-5. https://doi.org/10.1016/j.cell.2017.03.014
  44. Kuilman, T., Michaloglou, C., Vredeveld, L. C., Douma, S., van Doorn, R., Desmet, C. J., Aarden, L. A., Mooi, W. J. and Peeper, D. S. (2008) Oncogene-induced senescence relayed by an interleukindependent inflammatory network. Cell 133, 1019-1031. https://doi.org/10.1016/j.cell.2008.03.039
  45. Kulkarni, A. S., Gubbi, S. and Barzilai, N. (2020) Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 32, 15-30. https://doi.org/10.1016/j.cmet.2020.04.001
  46. Lagoumtzi, S. M. and Chondrogianni, N. (2021) Senolytics and senomorphics: natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic. Biol. Med. 171, 169-190. https://doi.org/10.1016/j.freeradbiomed.2021.05.003
  47. Lewis-McDougall, F. C., Ruchaya, P. J., Domenjo-Vila, E., Shin Teoh, T., Prata, L., Cottle, B. J., Clark, J. E., Punjabi, P. P., Awad, W., Torella, D., Tchkonia, T., Kirkland, J. L. and Ellison-Hughes, G. M. (2019) Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 18, e12931. https://doi.org/10.1111/acel.12931
  48. Liang, J., Nagahashi, M., Kim, E. Y., Harikumar, K. B., Yamada, A., Huang, W. C., Hait, N. C., Allegood, J. C., Price, M. M., Avni, D., Takabe, K., Kordula, T., Milstien, S. and Spiegel, S. (2013) Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23, 107-120. https://doi.org/10.1016/j.ccr.2012.11.013
  49. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. and Kroemer, G. (2013) The hallmarks of aging. Cell 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
  50. Marofi, F., Motavalli, R., Safonov, V. A., Thangavelu, L., Yumashev, A. V., Alexander, M., Shomali, N., Chartrand, M. S., Pathak, Y., Jarahian, M., Izadi, S., Hassanzadeh, A., Shirafkan, N., Tahmasebi, S. and Khiavi, F. M. (2021) CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther. 12, 81. https://doi.org/10.1186/s13287-020-02128-1
  51. Mato-Basalo, R., Morente-Lopez, M., Arntz, O. J., van de Loo, F. A. J., Fafian-Labora, J. and Arufe, M. C. (2021) Therapeutic potential for regulation of the nuclear factor kappa-B transcription factor p65 to prevent cellular senescence and activation of pro-inflammatory in mesenchymal stem cells. Int. J. Mol. Sci. 22, 3367. https://doi.org/10.3390/ijms22073367
  52. Miura, Y., Endo, K., Komori, K. and Sekiya, I. (2022) Clearance of senescent cells with ABT-263 improves biological functions of synovial mesenchymal stem cells from osteoarthritis patients. Stem Cell Res. Ther. 13, 222. https://doi.org/10.1186/s13287-022-02901-4
  53. Moiseeva, O., Deschenes-Simard, X., St-Germain, E., Igelmann, S., Huot, G., Cadar, A. E., Bourdeau, V., Pollak, M. N. and Ferbeyre, G. (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12, 489-498. https://doi.org/10.1111/acel.12075
  54. Mun, G. I. and Boo, Y. C. (2010) Identification of CD44 as a senescence-induced cell adhesion gene responsible for the enhanced monocyte recruitment to senescent endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 298, H2102- H2111. https://doi.org/10.1152/ajpheart.00835.2009
  55. Munoz-Espin, D. and Serrano, M. (2014) Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482-496. https://doi.org/10.1038/nrm3823
  56. Novakova, Z., Hubackova, S., Kosar, M., Janderova-Rossmeislova, L., Dobrovolna, J., Vasicova, P., Vancurova, M., Horejsi, Z., Hozak, P., Bartek, J. and Hodny, Z. (2010) Cytokine expression and signaling in drug-induced cellular senescence. Oncogene 29, 273-284. https://doi.org/10.1038/onc.2009.318
  57. Ogrodnik, M., Evans, S. A., Fielder, E., Victorelli, S., Kruger, P., Salmonowicz, H., Weigand, B. M., Patel, A. D., Pirtskhalava, T., Inman, C. L., Johnson, K. O., Dickinson, S. L., Rocha, A., Schafer, M. J., Zhu, Y., Allison, D. B., von Zglinicki, T., LeBrasseur, N. K., Tchkonia, T., Neretti, N., Passos, J. F., Kirkland, J. L. and Jurk, D. (2021) Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20, e13296. https://doi.org/10.1111/acel.13296
  58. Ogrodnik, M., Miwa, S., Tchkonia, T., Tiniakos, D., Wilson, C. L., Lahat, A., Day, C. P., Burt, A., Palmer, A., Anstee, Q. M., Grellscheid, S. N., Hoeijmakers, J. H. J., Barnhoorn, S., Mann, D. A., Bird, T. G., Vermeij, W. P., Kirkland, J. L., Passos, J. F., von Zglinicki, T. and Jurk, D. (2017) Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691. https://doi.org/10.1038/ncomms15691
  59. Orjalo, A. V., Bhaumik, D., Gengler, B. K., Scott, G. K. and Campisi, J. (2009) Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc. Natl. Acad. Sci. U. S. A. 106, 17031-17036. https://doi.org/10.1073/pnas.0905299106
  60. O'Sullivan Coyne, G. and Burotto, M. (2017) MABp1 for the treatment of colorectal cancer. Expert Opin. Biol. Ther. 17, 1155-1161. https://doi.org/10.1080/14712598.2017.1347631
  61. Oubaha, M., Miloudi, K., Dejda, A., Guber, V., Mawambo, G., Germain, M. A., Bourdel, G., Popovic, N., Rezende, F. A., Kaufman, R. J., Mallette, F. A. and Sapieha, P. (2016) Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci. Transl. Med. 8, 362ra144.
  62. Ovadya, Y., Landsberger, T., Leins, H., Vadai, E., Gal, H., Biran, A., Yosef, R., Sagiv, A., Agrawal, A., Shapira, A., Windheim, J., Tsoory, M., Schirmbeck, R., Amit, I., Geiger, H. and Krizhanovsky, V. (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435. https://doi.org/10.1038/s41467-018-07825-3
  63. Pal, H. C., Athar, M., Elmets, C. A. and Afaq, F. (2015) Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/ AKT/NFkappaB signaling pathways in SKH-1 hairless mice. Photochem. Photobiol. 91, 225-234. https://doi.org/10.1111/php.12337
  64. Rudin, C. M., Hann, C. L., Garon, E. B., Ribeiro de Oliveira, M., Bonomi, P. D., Camidge, D. R., Chu, Q., Giaccone, G., Khaira, D., Ramalingam, S. S., Ranson, M. R., Dive, C., McKeegan, E. M., Chyla, B. J., Dowell, B. L., Chakravartty, A., Nolan, C. E., Rudersdorf, N., Busman, T. A., Mabry, M. H., Krivoshik, A. P., Humerickhouse, R. A., Shapiro, G. I. and Gandhi, L. (2012) Phase II study of singleagent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin. Cancer Res. 18, 3163-3169. https://doi.org/10.1158/1078-0432.CCR-11-3090
  65. Salminen, A. (2021) Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J. Mol. Med. (Berl.) 99, 1553-1569. https://doi.org/10.1007/s00109-021-02123-w
  66. Salminen, A., Kauppinen, A. and Kaarniranta, K. (2012) Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell. Signal. 24, 835-845. https://doi.org/10.1016/j.cellsig.2011.12.006
  67. Samaraweera, L., Adomako, A., Rodriguez-Gabin, A. and McDaid, H. M. (2017) A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC. Sci. Rep. 7, 1900. https://doi.org/10.1038/s41598-017-01964-1
  68. Sanchez-Rangel, E. and Inzucchi, S. E. (2017) Metformin: clinical use in type 2 diabetes. Diabetologia 60, 1586-1593. https://doi.org/10.1007/s00125-017-4336-x
  69. Sharma, A. K., Roberts, R. L., Benson, R. D., Jr., Pierce, J. L., Yu, K., Hamrick, M. W. and McGee-Lawrence, M. E. (2020) The senolytic drug navitoclax (ABT-263) causes trabecular bone loss and impaired osteoprogenitor function in aged mice. Front. Cell Dev. Biol. 8, 354. https://doi.org/10.3389/fcell.2020.00354
  70. Shaw, S., Bourne, T., Meier, C., Carrington, B., Gelinas, R., Henry, A., Popplewell, A., Adams, R., Baker, T., Rapecki, S., Marshall, D., Moore, A., Neale, H. and Lawson, A. (2014) Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. MAbs 6, 774-782.
  71. Sundarraj, K., Raghunath, A. and Perumal, E. (2018) A review on the chemotherapeutic potential of fisetin: In vitro evidences. Biomed. Pharmacother. 97, 928-940. https://doi.org/10.1016/j.biopha.2017.10.164
  72. Taipale, M., Jarosz, D. F. and Lindquist, S. (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515-528. https://doi.org/10.1038/nrm2918
  73. Tilstra, J. S., Robinson, A. R., Wang, J., Gregg, S. Q., Clauson, C. L., Reay, D. P., Nasto, L. A., St Croix, C. M., Usas, A., Vo, N., Huard, J., Clemens, P. R., Stolz, D. B., Guttridge, D. C., Watkins, S. C., Garinis, G. A., Wang, Y., Niedernhofer, L. J. and Robbins, P. D. (2012) NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J. Clin. Invest. 122, 2601-2612. https://doi.org/10.1172/JCI45785
  74. Timper, K., Seelig, E., Tsakiris, D. A. and Donath, M. Y. (2015) Safety, pharmacokinetics, and preliminary efficacy of a specific anti-IL-1alpha therapeutic antibody (MABp1) in patients with type 2 diabetes mellitus. J. Diabetes Complications 29, 955-960. https://doi.org/10.1016/j.jdiacomp.2015.05.019
  75. Toso, A., Revandkar, A., Di Mitri, D., Guccini, I., Proietti, M., Sarti, M., Pinton, S., Zhang, J., Kalathur, M., Civenni, G., Jarrossay, D., Montani, E., Marini, C., Garcia-Escudero, R., Scanziani, E., Grassi, F., Pandolfi, P. P., Catapano, C. V. and Alimonti, A. (2014) Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75-89. https://doi.org/10.1016/j.celrep.2014.08.044
  76. Trendowski, M. (2015) PU-H71: an improvement on nature's solutions to oncogenic Hsp90 addiction. Pharmacol. Res. 99, 202-216. https://doi.org/10.1016/j.phrs.2015.06.007
  77. van Deursen, J. M. (2014) The role of senescent cells in ageing. Nature 509, 439-446. https://doi.org/10.1038/nature13193
  78. van Deursen, J. M. (2019) Senolytic therapies for healthy longevity. Science 364, 636-637. https://doi.org/10.1126/science.aaw1299
  79. Vicente, R., Mausset-Bonnefont, A. L., Jorgensen, C., Louis-Plence, P. and Brondello, J. M. (2016) Cellular senescence impact on immune cell fate and function. Aging Cell 15, 400-406. https://doi.org/10.1111/acel.12455
  80. Wang, Y., Chang, J., Liu, X., Zhang, X., Zhang, S., Zhang, X., Zhou, D. and Zheng, G. (2016) Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging 8, 2915-2926. https://doi.org/10.18632/aging.101100
  81. Waugh, D. J. and Wilson, C. (2008) The interleukin-8 pathway in cancer. Clin. Cancer Res. 14, 6735-6741. https://doi.org/10.1158/1078-0432.CCR-07-4843
  82. Wiley, C. D., Schaum, N., Alimirah, F., Lopez-Dominguez, J. A., Orjalo, A. V., Scott, G., Desprez, P. Y., Benz, C., Davalos, A. R. and Campisi, J. (2018) Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci. Rep. 8, 2410. https://doi.org/10.1038/s41598-018-20000-4
  83. Wissler Gerdes, E. O., Zhu, Y., Tchkonia, T. and Kirkland, J. L. (2020) Discovery, development, and future application of senolytics: theories and predictions. FEBS J. 287, 2418-2427. https://doi.org/10.1111/febs.15264
  84. Xu, M., Bradley, E. W., Weivoda, M. M., Hwang, S. M., Pirtskhalava, T., Decklever, T., Curran, G. L., Ogrodnik, M., Jurk, D., Johnson, K. O., Lowe, V., Tchkonia, T., Westendorf, J. J. and Kirkland, J. L. (2017) Transplanted senescent cells induce an osteoarthritis-like condition in mice. J. Gerontol. A Biol. Sci. Med. Sci. 72, 780-785.
  85. Xu, M., Palmer, A. K., Ding, H., Weivoda, M. M., Pirtskhalava, T., White, T. A., Sepe, A., Johnson, K. O., Stout, M. B., Giorgadze, N., Jensen, M. D., LeBrasseur, N. K., Tchkonia, T. and Kirkland, J. L. (2015a) Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4, e12997. https://doi.org/10.7554/eLife.12997
  86. Xu, M., Pirtskhalava, T., Farr, J. N., Weigand, B. M., Palmer, A. K., Weivoda, M. M., Inman, C. L., Ogrodnik, M. B., Hachfeld, C. M., Fraser, D. G., Onken, J. L., Johnson, K. O., Verzosa, G. C., Langhi, L. G. P., Weigl, M., Giorgadze, N., LeBrasseur, N. K., Miller, J. D., Jurk, D., Singh, R. J., Allison, D. B., Ejima, K., Hubbard, G. B., Ikeno, Y., Cubro, H., Garovic, V. D., Hou, X., Weroha, S. J., Robbins, P. D., Niedernhofer, L. J., Khosla, S., Tchkonia, T. and Kirkland, J. L. (2018) Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246-1256.
  87. Xu, M., Tchkonia, T., Ding, H., Ogrodnik, M., Lubbers, E. R., Pirtskhalava, T., White, T. A., Johnson, K. O., Stout, M. B., Mezera, V., Giorgadze, N., Jensen, M. D., LeBrasseur, N. K. and Kirkland, J. L. (2015b) JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl. Acad. Sci. U. S. A. 112, E6301-E6310.
  88. Yosef, R., Pilpel, N., Tokarsky-Amiel, R., Biran, A., Ovadya, Y., Cohen, S., Vadai, E., Dassa, L., Shahar, E., Condiotti, R., Ben-Porath, I. and Krizhanovsky, V. (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190. https://doi.org/10.1038/ncomms11190
  89. Yousefzadeh, M. J., Zhu, Y., McGowan, S. J., Angelini, L., FuhrmannStroissnigg, H., Xu, M., Ling, Y. Y., Melos, K. I., Pirtskhalava, T., Inman, C. L., McGuckian, C., Wade, E. A., Kato, J. I., Grassi, D., Wentworth, M., Burd, C. E., Arriaga, E. A., Ladiges, W. L., Tchkonia, T., Kirkland, J. L., Robbins, P. D. and Niedernhofer, L. J. (2018) Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18-28. https://doi.org/10.1016/j.ebiom.2018.09.015
  90. Yu, H., Pardoll, D. and Jove, R. (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798-809. https://doi.org/10.1038/nrc2734
  91. Yun, S. P., Han, Y. S., Lee, J. H., Kim, S. M. and Lee, S. H. (2018) Melatonin rescues mesenchymal stem cells from senescence induced by the uremic toxin p-cresol via inhibiting mTOR-dependent autophagy. Biomol. Ther. (Seoul) 26, 389-398. https://doi.org/10.4062/biomolther.2017.071
  92. Zhang, C., Xie, Y., Chen, H., Lv, L., Yao, J., Zhang, M., Xia, K., Feng, X., Li, Y., Liang, X., Sun, X., Deng, C. and Liu, G. (2020) FOXO4- DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice. Aging 12, 1272-1284. https://doi.org/10.18632/aging.102682
  93. Zhang, X., Zhang, S., Liu, X., Wang, Y., Chang, J., Zhang, X., Mackintosh, S. G., Tackett, A. J., He, Y., Lv, D., Laberge, R. M., Campisi, J., Wang, J., Zheng, G. and Zhou, D. (2018) Oxidation resistance 1 is a novel senolytic target. Aging Cell 17, e12780. https://doi.org/10.1111/acel.12780
  94. Zhu, Y., Doornebal, E. J., Pirtskhalava, T., Giorgadze, N., Wentworth, M., Fuhrmann-Stroissnigg, H., Niedernhofer, L. J., Robbins, P. D., Tchkonia, T. and Kirkland, J. L. (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9, 955-963. https://doi.org/10.18632/aging.101202
  95. Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., Pirtskhalava, T., Giorgadze, N., Johnson, K. O., Giles, C. B., Wren, J. D., Niedernhofer, L. J., Robbins, P. D. and Kirkland, J. L. (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428-435. https://doi.org/10.1111/acel.12445
  96. Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O'Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., McGowan, S. J., Fuhrmann-Stroissnigg, H., Gurkar, A. U., Zhao, J., Colangelo, D., Dorronsoro, A., Ling, Y. Y., Barghouthy, A. S., Navarro, D. C., Sano, T., Robbins, P. D., Niedernhofer, L. J. and Kirkland, J. L. (2015) The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658.