DOI QR코드

DOI QR Code

p38 MAPK Inhibitor NJK14047 Suppresses CDNB-Induced Atopic Dermatitis-Like Symptoms in BALB/c Mice

  • Lee, Ju-Hyun (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Son, Seung-Hwan (Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Kim, Nam-Jung (Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Im, Dong-Soon (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University)
  • Received : 2022.02.15
  • Accepted : 2022.05.13
  • Published : 2022.11.01

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disorder. Suppression of MAPKs and NF-κB is implicated as a vital mechanism of action of several traditional Chinese medicines for AD therapy. Although overexpression of MAPK mRNA in the skin tissue has been shown in the AD model, the roles of each MAPK in AD pathogenesis have rarely been studied. This study examined the effect of NJK14047, an inhibitor of p38 MAPKs, on AD-like skin lesions induced in BALB/c mice by sensitization and challenges with 1-chloro-2,4-dinitrobenzene (CDNB) on dorsal skin and ears, respectively. After induction of AD, NJK14047 (2.5 mg/kg) or dexamethasone (10 mg/kg) was administrated for 3 weeks via intraperitoneal injection. Following its administration, NJK14047 suppressed CDNB-induced AD-like symptoms such as skin hypertrophy and suppressed mast cell infiltration into the skin lesions. It also reduced CDNB-induced increase in TH2 cytokine (IL-13) and TH1 cytokines (interferon-γ and IL-12A) levels but did not decrease serum IgE level. Furthermore, NJK14047 blocked CDNB-induced lymph node enlargement. These results suggest that NJK14047, a p38 MAPK inhibitor, might be an optimal therapeutic option with unique modes of action for AD treatment.

Keywords

Acknowledgement

This research was supported by the Basic Research Laboratory Program (BRL) and the Basic Science Research Program of the Korean National Research Foundation funded by the Korean Ministry of Science, ICT, and Future Planning (NRF-2020R1A4A1016142 and NRF-2019R1A2C1005523).

References

  1. Akdis, C. A., Akdis, M., Bieber, T., Bindslev-Jensen, C., Boguniewicz, M., Eigenmann, P., Hamid, Q., Kapp, A., Leung, D. Y., Lipozencic, J., Luger, T. A., Muraro, A., Novak, N., Platts-Mills, T. A., Rosenwasser, L., Scheynius, A., Simons, F. E., Spergel, J., Turjanmaa, K., Wahn, U., Weidinger, S., Werfel, T. and Zuberbier, T.; European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology (2006) Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL consensus report. J. Allergy Clin. Immunol. 118, 152-169.
  2. Bai, X.-Y., Liu, P., Chai, Y.-W., Wang, Y., Ren, S.-H., Li, Y.-Y. and Zhou, H. (2020) Artesunate attenuates 2, 4-dinitrochlorobenzeneinduced atopic dermatitis by down-regulating Th17 cell responses in BALB/c mice. Eur. J.Pharmacol. 874, 173020. https://doi.org/10.1016/j.ejphar.2020.173020
  3. Bantz, S. K., Zhu, Z. and Zheng, T. (2014) The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. J. Clin. Cell. Immunol. 5, 202.
  4. Blume-Peytavi, U. and Wahn, U. (2011) Optimizing the treatment of atopic dermatitis in children: a review of the benefit/risk ratio of methylprednisolone aceponate. J. Eur. Acad. Dermatol. Venereol. 25, 508-515. https://doi.org/10.1111/j.1468-3083.2010.03942.x
  5. Buyanravjikh, S., Han, S., Lee, S., Jeong, A. L., Ka, H. I., Park, J. Y., Boldbaatar, A., Lim, J. S., Lee, M. S. and Yang, Y. (2018) Cryptotanshinone inhibits IgE-mediated degranulation through inhibition of spleen tyrosine kinase and tyrosine-protein kinase phosphorylation in mast cells. Mol. Med. Rep. 18, 1095-1103.
  6. Chen, C.-H., Zhang, D.-H., LaPorte, J. M. and Ray, A. (2000) Cyclic AMP activates p38 mitogen-activated protein kinase in Th2 cells: phosphorylation of GATA-3 and stimulation of Th2 cytokine gene expression. J. Immunol. 165, 5597-5605. https://doi.org/10.4049/jimmunol.165.10.5597
  7. Chen, L., Martinez, O., Overbergh, L., Mathieu, C., Prabhakar, B. and Chan, L. (2004) Early up-regulation of Th2 cytokines and late surge of Th1 cytokines in an atopic dermatitis model. Clin. Exp. Immunol. 138, 375-387. https://doi.org/10.1111/j.1365-2249.2004.02649.x
  8. Chen, Y., Xian, Y. F., Loo, S., Lai, Z., Chan, W. Y., Liu, L. and Lin, Z. X. (2020) Huang-Lian-Jie-Du extract ameliorates atopic dermatitislike skin lesions induced by 2,4-dinitrobenzene in mice via suppression of MAPKs and NF-κB pathways. J. Ethnopharmacol. 249, 112367. https://doi.org/10.1016/j.jep.2019.112367
  9. Choi, M.-S., Heo, J., Yi, C.-M., Ban, J., Lee, N.-J., Lee, N.-R., Kim, S. W., Kim, N.-J. and Inn, K.-S. (2016) A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza A virus replication by inhibiting virusinduced p38 MAPK activation. Biochem. Biophys. Res. Commun. 477, 311-316. https://doi.org/10.1016/j.bbrc.2016.06.111
  10. Davidson, W. F., Leung, D. Y. M., Beck, L. A., Berin, C. M., Boguniewicz, M., Busse, W. W., Chatila, T. A., Geha, R. S., Gern, J. E., Guttman-Yassky, E., Irvine, A. D., Kim, B. S., Kong, H. H., Lack, G., Nadeau, K. C., Schwaninger, J., Simpson, A., Simpson, E. L., Spergel, J. M., Togias, A., Wahn, U., Wood, R. A., Woodfolk, J. A., Ziegler, S. F. and Plaut, M. (2019) Report from the National Institute of Allergy and Infectious Diseases workshop on "Atopic dermatitis and the atopic march: mechanisms and interventions". J. Allergy Clin. Immunol. 143, 894-913.
  11. Duan, W., Chan, J. H., McKay, K., Crosby, J. R., Choo, H. H., Leung, B. P., Karras, J. G. and Wong, W. F. (2005) Inhaled p38α mitogenactivated protein kinase antisense oligonucleotide attenuates asthma in mice. Am. J. Respir. Crit. Care Med. 171, 571-578. https://doi.org/10.1164/rccm.200408-1006OC
  12. Escott, K., Belvisi, M., Birrell, M., Webber, S., Foster, M. and Sargent, C. (2000) Effect of the p38 kinase inhibitor, SB 203580, on allergic airway inflammation in the rat. Br. J. Pharmacol. 131, 173-176. https://doi.org/10.1038/sj.bjp.0703605
  13. Gee, M. S., Kim, S.-W., Kim, N., Lee, S. J., Oh, M. S., Jin, H. K., Bae, J.-S., Inn, K.-S., Kim, N.-J. and Lee, J. K. (2018) A novel and selective p38 mitogen-activated protein kinase inhibitor attenuates LPS-induced neuroinflammation in BV2 microglia and a mouse model. Neurochem. Res. 43, 2362-2371. https://doi.org/10.1007/s11064-018-2661-1
  14. Gee, M. S., Son, S. H., Jeon, S. H., Do, J., Kim, N., Ju, Y.-J., Lee, S. J., Chung, E. K., Inn, K.-S., Kim, N.-J. and Lee, J. K. (2020) A selective p38α/β MAPK inhibitor alleviates neuropathology and cognitive impairment, and modulates microglia function in 5XFAD mouse. Alzheimer's Res. Ther. 12, 45. https://doi.org/10.1186/s13195-020-00617-2
  15. Hale, K. K., Trollinger, D., Rihanek, M. and Manthey, C. L. (1999) Differential expression and activation of p38 mitogen-activated protein kinase α, β, γ, and δ in inflammatory cell lineages. J. Immunol. 162, 4246-4252. https://doi.org/10.4049/jimmunol.162.7.4246
  16. Hengge, U. R., Ruzicka, T., Schwartz, R. A. and Cork, M. J. (2006) Adverse effects of topical glucocorticosteroids. J. Am. Acad. Dermatol. 54, 1-15. https://doi.org/10.1016/j.jaad.2005.01.010
  17. Heo, J., Shin, H., Lee, J., Kim, T., Inn, K.-S. and Kim, N.-J. (2015) Synthesis and biological evaluation of N-cyclopropylbenzamidebenzophenone hybrids as novel and selective p38 mitogen activated protein kinase (MAPK) inhibitors. Bioorg. Med. Chem. Lett. 25, 3694-3698. https://doi.org/10.1016/j.bmcl.2015.06.036
  18. Huang, J., Su, M., Lee, B. K., Kim, M. J., Jung, J. H. and Im, D. S. (2018) Suppressive effect of 4-hydroxy-2-(4-hydroxyphenethyl) isoindoline-1,3-dione on ovalbumin-induced allergic asthma. Biomol. Ther. (Seoul) 26, 539-545. https://doi.org/10.4062/biomolther.2018.006
  19. Imai, Y. (2019) Interleukin-33 in atopic dermatitis. J. Dermatol. Sci. 96, 2-7. https://doi.org/10.1016/j.jdermsci.2019.08.006
  20. Kalesnikoff, J., Huber, M., Lam, V., Damen, J. E., Zhang, J., Siraganian, R. P. and Krystal, G. (2001) Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14, 801-811. https://doi.org/10.1016/S1074-7613(01)00159-5
  21. Kang, J. and Im, D. S. (2020) FFA2 activation ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice. Biomol. Ther. (Seoul) 28, 267-271. https://doi.org/10.4062/biomolther.2019.160
  22. Kawakami, T. and Galli, S. J. (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat. Rev. Immunol. 2, 773-786. Kim, J. Y., Jeong, M. S., Park, M. K., Lee, M. K. and Seo, S. J. (2014) Time-dependent progression from the acute to chronic phases in atopic dermatitis induced by epicutaneous allergen stimulation in NC/Nga mice. Exp. Dermatol. 23, 53-57.
  23. Kim, S.-Y., Kim, H., Kim, S.-W., Lee, N.-R., Yi, C.-M., Heo, J., Kim, B.- J., Kim, N.-J. and Inn, K.-S. (2017) An effective antiviral approach targeting hepatitis B virus with NJK14047, a novel and selective biphenyl amide p38 mitogen-activated protein kinase inhibitor. Antimicrob. Agents Chemother. 61, e00214-17.
  24. Koga, C., Kabashima, K., Shiraishi, N., Kobayashi, M. and Tokura, Y. (2008) Possible pathogenic role of Th17 cells for atopic dermatitis. J. Invest. Dermatol. 128, 2625-2630. https://doi.org/10.1038/jid.2008.111
  25. Koprak, S., Staruch, M. J. and Dumont, F. J. (1999) A specific inhibitor of the p38 mitogen activated protein kinase affects differentially the production of various cytokines by activated human T cells: dependence on CD28 signaling and preferential inhibition of IL-10 production. Cell. Immunol. 192, 87-95. https://doi.org/10.1006/cimm.1998.1448
  26. Ku, J. M., Hong, S. H., Kim, S. R., Choi, H.-S., Kim, H. I., Kim, D. U., Oh, S. M., Seo, H. S., Kim, T. Y., Shin, Y. C., Cheon, C. and Ko, S. G. (2018) The prevention of 2,4-dinitrochlorobenzene-induced inflammation in atopic dermatitis-like skin lesions in BALB/c mice by Jawoongo. BMC Complement. Altern. Med. 18, 215. https://doi.org/10.1186/s12906-018-2280-z
  27. Kumar, S., Boehm, J. and Lee, J. C. (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717-726. https://doi.org/10.1038/nrd1177
  28. Lee, J. C., Laydon, J. T., McDonnell, P. C., Gallagher, T. F., Kumar, S., Green, D., McNulty, D., Blumenthal, M. J., Heys, J. R., Landvatter, S. W., Strickler, J. E., McLaughlin, M. M., Siemens, I. R., Fisher, S. M., Livi, G. P., White, J. R., Adams, J. L. and Young, P. R. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739-746. https://doi.org/10.1038/372739a0
  29. Lee, J. M., Park, S. J. and Im, D. S. (2017) Calcium signaling of lysophosphatidylethanolamine through LPA1 in human SH-SY5Y neuroblastoma cells. Biomol. Ther. (Seoul) 25, 194-201. https://doi.org/10.4062/biomolther.2016.046
  30. Leung, D. Y. and Guttman-Yassky, E. (2017) Assessing the current treatment of atopic dermatitis: unmet needs. J. Allergy Clin. Immunol. 139, S47-S48. https://doi.org/10.1016/j.jaci.2017.01.010
  31. Leung, D. Y. and Soter, N. A. (2001) Cellular and immunologic mechanisms in atopic dermatitis. J. Am. Acad. Dermatol. 44, S1-S12. https://doi.org/10.1067/mjd.2001.109815
  32. Liu, F.-T., Goodarzi, H. and Chen, H.-Y. (2011) IgE, mast cells, and eosinophils in atopic dermatitis. Clin. Rev. Allergy Immunol. 41, 298-310. https://doi.org/10.1007/s12016-011-8252-4
  33. Lu, B., Ferrandino, A. F. and Flavell, R. A. (2004) Gadd45β is important for perpetuating cognate and inflammatory signals in T cells. Nat. Immunol. 5, 38-44. https://doi.org/10.1038/ni1020
  34. Maneechotesuwan, K., Xin, Y., Ito, K., Jazrawi, E., Lee, K.-Y., Usmani, O. S., Barnes, P. J. and Adcock, I. M. (2007) Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA3. J. Immunol. 178, 2491-2498. https://doi.org/10.4049/jimmunol.178.4.2491
  35. Min, G.-Y., Kim, J.-H., Kim, T.-I., Cho, W.-K., Yang, J.-H. and Ma, J.-Y. (2022) Indigo Pulverata Levis (Chung-Dae, Persicaria tinctoria) alleviates atopic dermatitis-like inflammatory responses in vivo and in vitro. Int. J. Mol. Sci. 23, 553. https://doi.org/10.3390/ijms23010553
  36. Mori, A., Kaminuma, O., Miyazawa, K., Ogawa, K., Okudaira, H. and Akiyama, K. (1999) p38 mitogen-activated protein kinase regulates human T cell IL-5 synthesis. J. Immunol. 163, 4763-4771. https://doi.org/10.4049/jimmunol.163.9.4763
  37. Muraro, A., Lemanske, R. F., Jr., Hellings, P. W., Akdis, C. A., Bieber, T., Casale, T. B., Jutel, M., Ong, P. Y., Poulsen, L. K., Schmid-Grendelmeier, P., Simon, H. U., Seys, S. F. and Agache, I. (2016) Precision medicine in patients with allergic diseases: airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 137, 1347-1358. https://doi.org/10.1016/j.jaci.2016.03.010
  38. Nath, P., Leung, S.-Y., Williams, A., Noble, A., Chakravarty, S. D. S., Luedtke, G. R., Medicherla, S., Higgins, L. S., Protter, A. and Chung, K. F. (2006) Importance of p38 mitogen-activated protein kinase pathway in allergic airway remodelling and bronchial hyperresponsiveness. Eur. J. Pharmacol. 544, 160-167. https://doi.org/10.1016/j.ejphar.2006.06.031
  39. Nel, A. E. (2002) T-cell activation through the antigen receptor. Part 1: signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J. Allergy Clin. Immunol. 109, 758-770. https://doi.org/10.1067/mai.2002.124259
  40. Niiro, H. and Clark, E. A. (2002) Regulation of B-cell fate by antigenreceptor signals. Nat. Rev. Immunol. 2, 945-956. https://doi.org/10.1038/nri955
  41. Nograles, K. E., Zaba, L. C., Guttman-Yassky, E., Fuentes-Duculan, J., Suarez-Farinas, M., Cardinale, I., Khatcherian, A., Gonzalez, J., Pierson, K. C., White, T. R., Pensabene, C., Coats, I., Novitskaya, I., Lowes, M. A. and Krueger, J. G. (2008) Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159, 1092-1102.
  42. Nograles, K. E., Zaba, L. C., Shemer, A., Fuentes-Duculan, J., Cardinale, I., Kikuchi, T., Ramon, M., Bergman, R., Krueger, J. G. and Guttman-Yassky, E. (2009) IL-22-producing "T22" T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J. Allergy Clin. Immunol. 123, 1244-1252. e2. https://doi.org/10.1016/j.jaci.2009.03.041
  43. Oh, M.-H., Oh, S. Y., Yu, J., Myers, A. C., Leonard, W. J., Liu, Y. J., Zhu, Z. and Zheng, T. (2011) IL-13 induces skin fibrosis in atopic dermatitis by thymic stromal lymphopoietin. J. Immunol. 186, 7232-7242. https://doi.org/10.4049/jimmunol.1100504
  44. Ono, K. and Han, J. (2000) The p38 signal transduction pathway activation and function. Cell. Signal. 12, 1-13. https://doi.org/10.1016/S0898-6568(99)00071-6
  45. Park, S. J. and Im, D. S. (2019) Blockage of sphingosine-1-phosphate receptor 2 attenuates allergic asthma in mice. Br. J. Pharmacol. 176, 938-949. https://doi.org/10.1111/bph.14597
  46. Saklatvala, J. (2004) The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Cur. Opin. Pharmacol. 4, 372-377. https://doi.org/10.1016/j.coph.2004.03.009
  47. Schafer, P. H., Wadsworth, S. A., Wang, L. and Siekierka, J. J. (1999) p38α mitogen-activated protein kinase is activated by CD28-mediated signaling and is required for IL-4 production by human CD4+ CD45RO+ T cells and Th2 effector cells. J. Immunol. 162, 7110-7119. https://doi.org/10.4049/jimmunol.162.12.7110
  48. Skapenko, A., Lipsky, P. E., Kraetsch, H.-G., Kalden, J. R. and Schulze-Koops, H. (2001) Antigen-independent Th2 cell differentiation by stimulation of CD28: regulation via IL-4 gene expression and mitogen-activated protein kinase activation. J. Immunol. 166, 4283-4292. https://doi.org/10.4049/jimmunol.166.7.4283
  49. Song, H.-Y., Kim, W. S., Mushtaq, S., Park, J. M., Choi, S.-H., Cho, J.-W., Lim, S.-T. and Byun, E.-B. (2019) A novel chrysin derivative produced by gamma irradiation attenuates 2, 4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in Balb/cmice. Food Chem. Toxicol. 128, 223-232. https://doi.org/10.1016/j.fct.2019.03.048
  50. Souwer, Y., Szegedi, K., Kapsenberg, M. L. and de Jong, E. C. (2010) IL-17 and IL-22 in atopic allergic disease. Curr. Opin. Immunol. 22, 821-826 https://doi.org/10.1016/j.coi.2010.10.013
  51. Spergel, J. M., Mizoguchi, E., Oettgen, H., Bhan, A. K. and Geha, R. S. (1999) Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. J. Clin. Invest. 103, 1103-1111. https://doi.org/10.1172/JCI5669
  52. Underwood, D. C., Osborn, R. R., Kotzer, C. J., Adams, J. L., Lee, J. C., Webb, E. F., Carpenter, D. C., Bochnowicz, S., Thomas, H. C., Hay, D. W. and Griswold, D. E. (2000) SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J. Pharmacol. Exp. Ther. 293, 281-288.
  53. Vestergaard, C., Yoneyama, H., Murai, M., Nakamura, K., Tamaki, K., Terashima, Y., Imai, T., Yoshie, O., Irimura, T., Mizutani, H. and Matsushima, K. (1999) Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J. Clin. Invest. 104, 1097-1105. https://doi.org/10.1172/JCI7613
  54. Zhang, R., Zhang, H., Shao, S., Shen, Y., Xiao, F., Sun, J., Piao, S., Zhao, D., Li, G. and Yan, M. (2022) Compound traditional Chinese medicine dermatitis ointment ameliorates inflammatory responses and dysregulation of itch-related molecules in atopic dermatitis. Chin. Med. 17, 3. https://doi.org/10.1186/s13020-021-00555-7