• Title/Summary/Keyword: Aging Mechanism

Search Result 387, Processing Time 0.024 seconds

Target Proteins Involved in Aging Mechanism as an Aging Molecular Marker (노화 분자마커로서 노화기전에 관여하는 타켓 단백질)

  • Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.983-989
    • /
    • 2016
  • All cells composing of our body undergo their destiny such as proliferation, differentiation, necrosis, apoptosis and senescence depending on their circumstance with time. The errors occurring in these processes develop several aberrations in phenotypes including cancer, inflammation, aging and diseases. New strategy and approach are required to screen anti-aging compounds derived from natural products. Therefore, here we explain the target proteins to play a key role in aging mechanism. In the first place, matrix metalloproteinases (MMPs) are involved in metastasis, chronic inflammation and skin aging as an aging marker. In particular, histone deacetylases (HDACs) give a great attention to aging researchers who try to extend the life span of animal model. In addition, we describe the signaling pathway related to senescence which p53, IGF-1 and SIRT1 play an important role in. Furthermore, autophagy is involved in the signaling pathway associated with aging. Several new compounds modulating the signaling pathway of senescence are introduced in this review. Here, we try to provide a new insight in the molecular basis for the aging mechanism and development of aging marker. In addition, the compounds introduced here could be available for pharmaceutical applications for the prevention and the treatment of diseases related to aging.

A Study on the Physical and Chemical Propeties of Hydrous Aluminum Oxide (합성알루마나수화물의 물리화학적 성질에 관한 연구)

  • 이계주
    • YAKHAK HOEJI
    • /
    • v.19 no.4
    • /
    • pp.219-226
    • /
    • 1975
  • Physical and chemical properties on the aging inhibition mechanism of hydrous aluminum oxide were studied by means of dehydration velocity, activation energy, DTA, TGA, IR spectra, X-ray diffraction and TMA. During aging, changes may occur in the hydrous aluminum oxide structure which results in a loss of acid reactivity and in crystal formation to the hydrated hydrous alumina. The results obtained from the X-ray diffraction pattern and DTA, TGA thermogram studies showed that the aging product stabilized with either sorbitol or mannitol was hydrous aluminum oxide ($Al_{2}O_{3}{\cdot}xH_{2}O$) but the aging product not stabilized with either sorbitol or mannitol product not stabilized was hydrated hydrous aluminum oxide $Al_{2}O_{3}{\cdot}xH_{2}O{\cdot}yH_{2}O$. The activation energy of dehydration of the hydrous almina was about 17 Kcal. mol$^{1}$ deg$^{-1}$ which was observed a little less than that of 22 kcal.mol.$^{-1}$ deg.$^{-1}$ of or mannitol, the inhibition mechanism in the aging process from oxide is assumed to prevent the formation of the hydrated hydrous aluminum oxide and the aging process is thought of as analogous to the polymorphic transformations which occur as a system converts to its most stable state.

  • PDF

Aging mechanism for improving the tenderness and taste characteristics of meat

  • Seon-Tea Joo;Eun-Yeong Lee;Yu-Min Son;Md. Jakir Hossain;Chan-Jin Kim;So-Hee Kim;Young-Hwa Hwang
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1151-1168
    • /
    • 2023
  • Tenderness and taste characteristics of meat are the key determinants of the meat choices of consumers. This review summarizes the contemporary research on the molecular mechanisms by which postmortem aging of meat improves the tenderness and taste characteristics. The fundamental mechanism by which postmortem aging improves the tenderness of meat involves the operation of the calpain system due to apoptosis, resulting in proteolytic enzyme-induced degradation of cytoskeletal myofibrillar proteins. The improvement of taste characteristics by postmortem aging is mainly explained by the increase in the content of taste-related peptides, free amino acids, and nucleotides produced by increased hydrolysis activity. This review improves our understanding of the published research on tenderness and taste characteristics of meat and provides insights to improve these attributes of meat through postmortem aging.

Development of CANDU Reactor Aging Monitor (CANDU형 원전 경년열화 감시시스템(Aging Monitor) 개발)

  • Kim, Hong Key;Choi, Young Hwan;Ko, Han Ok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.13-19
    • /
    • 2009
  • As the operating time in nuclear power plants (NPPs) increases, the integrity of nuclear components may be continually degraded due to aging effects of systems, structures and components. Recently, a number of NPPs are being operated beyond their design life to produce more electricity without shutting down. The critical issue in extending a lifetime is to maintain the level of safety during the extended operation period while satisfying the international regulatory standards. Therefore, it is beneficial to build a monitoring system to measure an aging status. In this paper, the Aging Monitor (AM) based on lots of aging database obtained from the operating plants and research results on the aging effects was developed to monitor, manage and evaluate the aging phenomena systematically and effectively in NPPs. The AM for the CANDU is divided into 6 modules: (1) Aging Alarm/Coloring Monitor, (2) Aging Database, (3) Aging Document, (4) Real-time Integrity Monitor, (5) Surveillance and Inspection Management System, and (6) Continued Operation and Periodic Safety Review (PSR) Safety Evaluation. The proposed system is expected to provide the integrity assessment for the major mechanical components of an NPP under concurrent working environments.

  • PDF

Aging Behavior of Beeswaxed Hanji(II) - Acidic and Alkaline Aging of Beeswaxed Hanji - (밀랍지의 열화 거동 (제2보) - 산 및 알칼리에 의한 밀랍지의 열화 -)

  • Kim, Kang-Jae;Lee, Min-Hyung;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.66-72
    • /
    • 2011
  • The annals of Joseon Dynasty is one of UNESCO's Memory of the World Register. For the safety preservation of the waxed annals of Joseon Dynasty, the acidic and alkaline aging mechanism of beeswax and beeswaxed Hanji has been investigated. The weight loss of beeswaxed Hanji by the acidic aging was higher than those of alkaline beeswax. The acid value and relative intensity of carbonyl groups in beeswax were slowly increased with aging time. The strength of dewaxed Hanji was decreased with aging time. The significant changes of crystallinity of dewaxed Hanji by acidic and alkaline aging were not observed.

Effect of Corydalis tuber Acua-acupuncture Solution on Antiacetylcholinesterase and Antioxidants (현호소약침액(玄胡索藥鍼液)의 acetylcholinesterase 억제효과와 항산화에 미치는 영향(影響))

  • Kang, Mi-kyeong;Nam, Sang-soo;Lee, Yun-ho
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.235-248
    • /
    • 2004
  • It has been investigated about aging theory. However, aging mechanism still remains to be unknown. Aging and aging related diseases might be due to oxidative damage and these were modifiable by genetic and environmental factors. For designing an optimal medical treatment and countermeasure against aging and aging related disease, it is necessary to understand the aging mechanism. Acetylcholine(Ach) plays an important role in memory. If someone doesn't have enough Ach, he has a tendency to catch a Alzheimer's disease. Corydalis tuber has been clinically used to treat heart disease, gastrointestinal disease and other diseases including endocrine disease in Oriental medicine. The purpose of this article is to investigate the inhibitory effect on Acetylcholinesterase and scavenging effects on NO, DPPH of Corydalis tuber Acua-acupuncture solution(CTAS). The results are summerised as follows; 1. There is a significant inhibitory effect of $0.01mg/m{\ell}$ CTAS group at 20, 30, 60 minutes and $0.1mg/m{\ell}$ CTAS group at 10, 20, 30, 60 minutes on AchE. 2. There is no significant scavenging effect of CTAS on NO. 3. There is a significant scavenging effect of $0.1mg/m{\ell}$ and $0.01mg/m{\ell}$ CTAS group at 10 minutes but there is no significant scavenging effect at 20, 30, 60 minutes on DPPH. There is a significant scavenging effect of $1mg/m{\ell}$ CTAS group at 10, 20, 30, 60 minutes on DPPH.

  • PDF

REACTION OF PAPER PULP AND ALKYL KETENE DIMER BY AGING TREATMENT DURING PAPERMAKIN PROCESS

  • Shin, Young-Doo;Seo, Won-Sung;Cho, Nam-Seok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.11a
    • /
    • pp.83-83
    • /
    • 2000
  • Alkylketene dimer was known as a cellulose reactive or alkaline size because it does not require to fix to the fiber as do the traditional rosin sizes. A proposed sizing mechanism of AKD was the formation of P -ketoester bond between AKD and cellulose which provides the permanent attachment and the orientation of the hydrophobic alkylchains outward. However, some questions about the reaction had arisen and thus, the sizing mechanism of AKD has been a subject of controversy for several decades. The major concern of the controversy is that AKD is really reactive with cellulose or not in the papermaking conditions. In this study, reaction between AKD and pulp fiber was investigated, in order to find out whether AKD forms P-ketoester with pulp fiber during aging under no catalyzed neutral condition with obvious spectroscopic evidence. In addition, effect of aging treatment on the sizing development was studied. It has been disclosed that, in absence of water, AKD reacted with cellulose to form P -ketoester linkage under no catalyzed neutral condition, while, in presence of water, most of AKD was hydrolyzed to a dialkyl ketone or P -ketoacid. In addition, during the aging treatment of AKD-sized paper, its typical IR spectra bands gradually were reduced, completely disappeared after 6hr aging, and formed new absorption bands at 1707cm-' and shoulder peak at 1700cm-' which refer to the typical dialkylketone absorption bands. Therefore, the formation of P -ketoester between AKD and pulp fiber is impossible in the practical papermaking process. It could be suggested that the sizing development of AKD-sized paper is obtained by next two mechanism: 1) formation of a thin-layer of AKD on the fiber surface through melting and spreading of AKD emulsion particles by heat and 2) the hydrolysis of AKD to dialkyl ketone which has higher melting point, during drying and storage of AKD sized papers.

  • PDF

Behavior Analysis of Fill Dam Incorporating Aging Effects (Aging효과를 고려한 필댐의 거동분석)

  • Shin, Dong-Hoon;Park, Han-Gyu;Cho, Sung-Eun;Im, Eun-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.854-859
    • /
    • 2008
  • This study describes the aging behavior of soils and its mechanism, which have been reported in the literatures mainly by Mitchell(1986) and Schmertmann(1991). It could be known that aging of soils has both positive and negative effects on mechanical properties of soils. In order to show aging effects on dam behavior, a parametric study was carried out based considering the presence of a weak area within clay core zone of the fill dam. From the comparison of results obtained from numerical analysis and filed investigation, age-softening phenomena occurred within core zone during about 30 years after its completion.

  • PDF

Acid sphingomyelinase-mediated blood-brain barrier disruption in aging

  • Park, Min Hee;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.111-112
    • /
    • 2019
  • Although many studies have reported that the breakdown of the blood-brain barrier (BBB) represents one of the major pathological changes in aging, the mechanism underlying this process remains relatively unexplored. In this study, we described that acid sphingomyelinase (ASM) derived from endothelial cells plays a critical role in BBB disruption in aging. ASM levels were elevated in the brain endothelium and plasma of aged humans and mice, resulting in BBB leakage through an increase in caveolae-mediated transcytosis. Moreover, ASM caused damage to the caveolae-cytoskeleton via protein phosphatase 1-mediated ezrin/radixin/moesin dephosphorylation in primary mouse brain endothelial cells. Mice overexpressing brain endothelial cell-specific ASM exhibited acceleration of BBB impairment and neuronal dysfunction. However, genetic inhibition and endothelial specific knock-down of ASM in mice improved BBB disruption and neurocognitive impairment during aging. Results of this study revealed a novel role of ASM in the regulation of BBB integrity and neuronal function in aging, thus highlighting the potential of ASM as a new therapeutic target for anti-aging.

Longevity through diet restriction and immunity

  • Jeong-Hoon Hahm;Hyo-Deok Seo;Chang Hwa Jung;Jiyun Ahn
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.537-544
    • /
    • 2023
  • The share of the population that is aging is growing rapidly. In an aging society, technologies and interventions that delay the aging process are of great interest. Dietary restriction (DR) is the most reproducible and effective nutritional intervention tested to date for delaying the aging process and prolonging the health span in animal models. Preventive effects of DR on age-related diseases have also been reported in human. In addition, highly conserved signaling pathways from small animal models to human mediate the effects of DR. Recent evidence has shown that the immune system is closely related to the effects of DR, and functions as a major mechanism of DR in healthy aging. This review discusses the effects of DR in delaying aging and preventing age-related diseases in animal, including human, and introduces the molecular mechanisms that mediate these effects. In addition, it reports scientific findings on the relationship between the immune system and DR-induced longevity. The review highlights the role of immunity as a potential mediator of the effects of DR on longevity, and provides insights into healthy aging in human.