• Title/Summary/Keyword: Aggregation energy

Search Result 226, Processing Time 0.018 seconds

Electrospraying of Micro/Nano Particles for Protein Drug Delivery (단백질 약물 전달을 위한 마이크로/나노 입자의 전기분무 제조법)

  • Yoo, Ji-Youn;Kim, Min-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • The control of the surface energy by electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. The advantages are quite helpful to improve the stability of protein drug and control its release. Herein, the nano-encapsulation of protein drugs using electrospraying was investigated. Albumin as a model protein was processed using uniaxial and co-axial electrospraying, and chitosan, polycaporlactone (PCL), and poly (ethylene glycol) (PEG) were used as encapsulation materials. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance of electrical potential gradient, etc were measured to obtain the maximum efficiency. In the chitosan systems, mean particles size decreases as flow rate and the distance between nozzle and the collecting part decreases. In the uniaxial technique of the PCL systems, mean particles size decreases as flow rate decreases. In the coaxial technique of the PCL systems, it was found that the particles size gets larger under the application of the higher ratio of inner-to-outer liquid flow rates. The primary particles formed out of an electrospraying nozzle showed narrow particle size distribution, but once they arrived to the collecting part, aggregation behavior was observed obviously. Efficient nano-encapsulation of albumin with PCL, PEG, and chitosan was conveniently achieved using electrospraying at above 12 kV.

Synthesis and Characterization of Composite Paper Using Polyamide Fiber and Surface Modified Microfibrillated Cellulose (표면 개질된 마이크로피브릴화 셀룰로오스를 이용한 폴리아마이드 섬유와의 복합페이퍼 제조 및 특성평가)

  • Lee, Jong-Hee;Lim, Jung-Hyurk;Kim, Ki-Young;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.74-79
    • /
    • 2014
  • Microfibrillated cellulose (MFC) was chemically modified with two different silane coupling agents (3-aminopropyltriethoxysilane and 3-mercaptopropyltriethoxysilane) and lauroyl chloride. The surface modification of MFC was confirmed by infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), and contact angle measurements. Composite paper was successfully prepared with surface modified MFC and polyamide (PA) fiber. The surface modification of MFC not only prevented aggregation of MFC but also improved adhesive property between PA fiber and surface modified MFC. It was impossible to prepare papers of only PA fiber because there is no binder to connect PA fibers. That is, surface modified MFC as a binder in PA fiber played a crucial role in making composite paper. Composite paper with silane modified MFC showed higher tensile strength and modulus than composite paper with lauroyl moiety modified MFC. The structure, morphology, and mechanical properties of composite paper were analyzed by scanning electron microscope (SEM) and universal testing machine (UTM).

Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model (충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구)

  • Jisu Yang;Kyoungkeun Yoo;Joobeom Seo;Seongsoo Han
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.38-47
    • /
    • 2024
  • Molybdenite is the primary molybdenum resource and is extracted via flotation due to its unique hydrophobic surface. Meanwhile, the grade and crystal size of mined molybdenite are decreasing. As a result, the size of the molybdenum ore required for liberation is decreasing, and the flotation process's feed size input is also decreasing. Therefore, in order to secure molybdenum, it is necessary to perform research on the flotation for the fine molybdenite. In this study, we developed a method to enhance the flotation efficiency of fine molybdenite particles in the range of 5-30 ㎛. The methodology involved implementing bubble size reduction and particle aggregation. Through simulations of bubble-particle collision probability and flotation experiments, we were able to find the ranges of bubble size and particle aggregate size that make fine particles float more effectively. This range provided the conditions for effective flotation of fine molybdenite particles. Therefore, we will implement the flotation conditions established in this study for fine molybdenum ore to improve the flotation process in molybdenum mineral processing plants in the future.

Characterization of CaCO3 Formation Using an Ion Selective Electrode : Effects of the Mg/Ca Ratio and Temperature (이온 선택성 전극을 이용한 탄산칼슘 형성 특성 연구 : 마그네슘-칼슘 비율과 반응 온도의 영향)

  • Misong Han;Byoung-Young Choi;Seung-Woo, Lee;Jinyoung Park;Soochun Chae;Jun-Hwan Bang;Kyungsun Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.111-120
    • /
    • 2023
  • The nucleation mechanism was studied using a calcium ion selective electrode (Ca ISE) to observe the formation of CaCO3, a representative mineral in the CO2 cycle, and to analyze the effect of the Mg/Ca-ratio and temperature on the formation of pre-nucleation cluster (PNC) and CaCO3. As a result of the experiment, a small amount of crystal was formed. Energy dispersive X-ray spectroscopy (EDS) was used for surface element analysis, and a field emission scanning-electron microscope (FE-SEM) was used for the morphology analysis of synthesized carbonates. These results showed that various shapes of crystalline CaCO3 (calcite, aragonite, etc.) were observed for each Mg/Ca ratio and temperature. In addition, the calibration plot obtained from Ca ISE showed information on the formation process of CaCO3. Our results showed that as magnesium ions interfered with the binding of calcium and carbonate ions and delayed the aggregation between PNCs, the nucleation and formation of CaCO3 were delayed. On the other hand, the temperature showed an opposite trend as compared to the effect of magnesium under our experimental conditions, indicating that temperature accelerated the formation of CaCO3. Furthermore, the morphology of CaCO3 clearly changed according to the Mg/Ca ratio and temperature, and it was confirmed that the two factors are very important for CaCO3 formation in that they could affect the overall process.

Expression profile of defense-related genes in response to gamma radiation stress (방사선 스트레스 반응 방어 유전자의 탐색 및 발현 분석)

  • Park, Nuri;Ha, Hye-Jeong;Subburaj, Saminathan;Choi, Seo-Hee;Jeon, Yongsam;Jin, Yong-Tae;Tu, Luhua;Kumari, Shipra;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.359-366
    • /
    • 2016
  • Tradescantia is a perennial plant in the family of Commelinaceae. It is known to be sensitive to radiation. In this study, Tradescantia BNL 4430 was irradiated with gamma radiation at doses of 50 to 1,000 mGy in a phytotron equipped with a $^{60}Co$ radiation source at Korea Atomic Energy Research Institute, Korea. At 13 days after irradiation, we extracted RNA from irradiated floral tissues for RNA-seq. Transcriptome assembly produced a total of 77, 326 unique transcripts. In plantlets exposed to 50, 250, 500, and 1000 mGy, the numbers of up-regulated genes with more than 2-fold of expression compared that in the control were 116, 222, 246, and 308, respectively. Most of the up-regulated genes induced by 50 mGy were heat shock proteins (HSPs) such as HSP 70, indicating that protein misfolding, aggregation, and translocation might have occurred during radiation stress. Similarly, highly up-regulated transcripts of the IQ-domain 6 were induced by 250 mGy, KAR-UP oxidoreductase 1 was induced by 500 mGy, and zinc transporter 1 precursor was induced by 1000 mGy. Reverse transcriptase (RT) PCR and quantitative real time PCR (qRT-PCR) further validated the increased mRNA expression levels of selected genes, consistent with DEG analysis results. However, 2.3 to 97- fold higher expression activities were induced by different doses of radiation based on qRT-PCR results. Results on the transcriptome of Tradescantia in response to radiation might provide unique identifiers to develop in situ monitoring kit for measuring radiation exposure around radiation facilities.

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method (전극 혼합 방식의 차이로 인한 특성 변화 최적화)

  • Jeong-Tae Kim;Carlos Tafara Mpupuni;Beom-Hui Lee;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.