• Title/Summary/Keyword: Aggregate temperature

Search Result 361, Processing Time 0.021 seconds

Numerical analysis on the behaviour of reinforced concrete frame structures in fire

  • Dzolev, Igor M.;Cvetkovska, Meri J.;Ladinovic, Dorde Z.;Radonjanin, Vlastimir S.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.637-647
    • /
    • 2018
  • Numerical approach using finite element method has been used to evaluate the behaviour of reinforced concrete frame structure subjected to fire. The structure is previously designed in accordance with Eurocode standards for the design of structures for earthquake resistance, for the ductility class M. Thermal and structural response are obtained using a commercially available software ANSYS. Temperature-dependent nonlinear thermal and mechanical properties are adopted according to Eurocode standards, with the application of constitutive model for the triaxial behaviour of concrete with a smeared crack approach. Discrete modelling of concrete and reinforcement has enabled monitoring of the behaviour at a global, as well as at a local level, providing information on the level of damage occurring during fire. Critical regions in frame structures are identified and assessed, based on temperatures, displacements, variations of internal forces magnitudes and achieved plastic deformations of main reinforcement bars. Parametric analyses are conducted for different fire scenarios and different types of concrete aggregate to determine their effect on global deformations of frame structures. According to analyses results, the three-dimensional finite element model can be used to evaluate the insulation and mechanical resistance criteria of reinforced concrete frame structures subjected to nominal fire curves.

Effect of Cork Extract on the Mechanical Property of Thermoplastic Polyurethane

  • Taehoon Oh;Seung-Hyun Cho;Bumyong Yoon;Hyejung Yoon;Jonghwan Suhr
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.86-91
    • /
    • 2023
  • Thermoplastic polyurethane (TPU) is a material whose mechanical properties change according to the phase separation of its unique internal microstructure and is therefore used in various industries. Use of TPU as composites helps in improving the desirable characteristics and properties in accordance with usage. Eco-friendly fillers one of the fillers are on the rise and those are mostly used for reinforcing role. Suberin, which can be extracted from cork, is the main component of cork. It is known to serve high damping property of elastomer composite. The original chemical structure of Suberin is an aliphatic polyester aggregate. In this research, Suberin is obtained after depolymerization into an oligomer having 2 or 3 ester bonds through alkaline hydrolysis. The extracted suberin was added to the matrix which is thermoplastic polyurethane as an eco-friendly filler for improving vibration damping property. As a result, when 10 wt% of suberin was added into thermoplastic polyurethane the existing trade-off relationship was overcome. And it is attained the elastic modulus and damping factor at room temperature improving 92 and 59%, respectively, compared to the original matrix. Those results are from the interaction between the microstructure of TPU and suberin.

Pulse Electrodeposition of Polycrystalline Si Film in Molten CaCl2 Containing SiO2 Nanoparticles

  • Taeho Lim;Yeosol Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2023
  • The high cost of Si-based solar cells remains a substantial challenge to their widespread adoption. To address this issue, it is essential to reduce the production cost of solar-grade Si, which is used as raw material. One approach to achieve this is Si electrodeposition in molten salts containing Si sources, such as SiO2. In this study, we present the pulse electrodeposition of Si in molten CaCl2 containing SiO2 nanoparticles. Theoretically, SiO2 nanoparticles with a diameter of less than 20 nm in molten CaCl2 at 850℃ have a comparable diffusion coefficient with that of ions in aqueous solutions at room temperature. However, we observed a slower-than-expected diffusion of the SiO2 nanoparticles, probably because of their tendency to aggregate in the molten CaCl2. This led to the formation of a non-uniform Si film with low current efficiency during direct current electrodeposition. We overcome this issue using pulse electrodeposition, which enabled the facile supplementation of SiO2 nanoparticles to the substrate. This approach produced a uniform and thick electrodeposited Si film. Our results demonstrate an efficient method for Si electrodeposition in molten CaCl2 containing SiO2 nanoparticles, which can contribute to a reduction in production cost of solar-grade Si.

Temperature Sensitivity Analysis of TDR Moisture Content Sensor for Road Pavement (도로하부 함수비 계측을 위한 TDR 방식 함수비 센서 온도 민감도 분석)

  • Cho, Myunghwan;Lee, Yoonhan;Kim, Nakseok;Jee, Keehwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.329-336
    • /
    • 2013
  • The infrastructure of flexible pavement is composed of aggregate subbase, anti-frost layer, and subgrade. In particular, the subgrade performance is affected by climates such as frost action and precipitation. The method of TDR(Time Domain Reflectometry) sensors to measure moisture contents in subgrade layer has been used in the research. Due to the TDR method using dielectric permitivity of soil and water, the sensors can be affected by the low subgrade temperatures. The air temperatures frequently drops below $-20^{\circ}C$ in the winter in Korea. As a result, it is necessary to estimate the accuracy of the TDR moisture sensors in the range of below zero temperatures. In this study, the subgrade temperatures of lower than $-2^{\circ}C$ were extended to evaluate temperature sensitivity of the TDR moisture sensors. The test results revealed that the moisture contents around the sensors were reduced while those of the upper part of specimen showed a tendency to increase as the specimen surface temperature drops below zero under the volumetric moisture contents(VMC) of 20% and 30%. However, the impact of temperature on the function of the sensor at lower water contents was found to be negligible if any.

A Study for Controlling Early-age Temperature Rise of the Concrete Pavement by Shadow Tent in Hot Weather Construction (차광막를 이용한 하절기 콘크리트포장의 초기온도 관리 방안연구)

  • Joh, Young-Oh;Kim, Hyung-Bae;Suh, Young-Chan;Ann, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.75-89
    • /
    • 2004
  • Long term performance of concrete pavement significantly depends on the given construction and environmental condition. It means that random cracks and extreme crack width due to inappropriate quality control at the early age might lead to decreasing the pavement service life. The temperature and moisture during the construction, cement and aggregate types, curing condition are major components to affect the quality of the concrete pavement at the early age. First of all, the high temperature differential, that is made by increasing air temperature and the heat of cement hydration, is known as the major contributor to severe cracks. In this study, tent covering was used for controlling temperature of the concrete slab. The field measurement data indicates that the effect of the tent covering is very significant to decrease possibilities of random crack occurrence and curling stress and enhance the long-term concrete strength. HIPERPAV(High PERformance PAVing software), a program predicting the strength and stress of an earty-age concrete pavement (72 hour after placement), is used for simulating the effects of tent covering. The HIPERPAVE results showed that the section with the tent covering has higher reliability than the section without the tent covering by 22.5%. In details, reliability is increased 72.5% (without the tent covering) to 95% (with the tent covering).

  • PDF

Characterization of artificial aggregates fabricated with direct sintering method (직화소성법으로 제조된 인공골재의 특성 분석)

  • Kim, Kang-Duk;Kang, Seun-Ggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • The bulk density, water absorption and microstructure of the artificial aggregates were controlled as a function of sintering temperature (1100 and $1200^{\circ}C$) and time (10~60 min) in the fabrication process of the artificial aggregates by the direct sintering process using dredged soil, the inorganic wastes. Also, the physical properties of the artificial aggregates fabricated according to the different sintering methods such as the direct sintering method used in this study and the increasing temperature sintering method used in the previous report, were compared and analysed. The bulk density of aggregates sintered at $1200^{\circ}C$ by the direct sintering method showed below 1.0, and the thickness of a shell and the pore size of the black core were increased with sintering temperature. Also, in the same sintering temperature, the area of black core was decreased, the thickness of shell was increased and the water absorption was decreased with sintering time. The black core of artificial aggregates of bulk density below 1.0 had the similar microstructure, regardless of sintering methods. In contrast, the shell of aggregates fabricated by the increasing temperature sintering method showed more dense microstructure than that by direct sintering method, hence the water absorption of aggregate sintered using direct sintering was relatively high. Thus, the direct sintering method is suitable for fabrication of artificial aggregates in ceramic carriers or absorbents applications.

Analysis of Influential Factors on Compressive Strength of Concrete Specimens Obtained from a Drilled Shaft Construction Site (현장타설말뚝 콘크리트 공시체 압축강도 데이터 분석을 통한 강도 영향인자 분석)

  • Lee, Kicheol;Chung, Moonkyung;Kim, So Yeun;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.37-47
    • /
    • 2015
  • Recently, the quality of drilled shafts concrete has been improved significantly due to the improved concrete performance, upgraded concrete materials, and better management of on-site constructions. Despite the development, current conventional quality management on concrete constructions is still used without any criticism. In this study, compressive strength test results of more than 200 concrete specimens after 7 and 28 days of curing were collected from one site at Songdo area of Incheon. The concrete specimens were prepared from the concrete with aggregate maximum dimensions of 25 mm, target compressive strength of 40 MPa, and slump of 180 mm. Influential factors including concrete temperature, air temperature, amount of slump, amount of air, amount of salinity on concrete specimen were also examined. The database was established from collected information and statistical analyses were performed. Analyzed results confirm that "the difference between concrete temperature and air temperature" has the largest impact on the compressive strengths of specimens at the durations of 7 and 28 days.

Freezing and Bearing Capacity Characteristics of Road Foundations under Temperature Condition (온도조건에 의한 도로하부 지반의 동결 및 지지력 특성)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.5-14
    • /
    • 2012
  • In the current design codes for anti-freezing layer, the thickness of anti-freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity of road foundation materials as well as their seasonal and mechanical properties to take an appropriate and reasonable design of the road structure system. In this paper, the freezing and bearing capacity characteristics of typical road foundation materials were evaluated in the large scale laboratory test. LFWD (light falling weight deflectometer) was used to determine the change of elastic modulus ($E_{LFWD}$) caused by to the frost heave and thaw. Furthermore, the influence of crushed natural aggregate on the freezing of the subgrade soil was studied to verify the function and effectiveness of the anti-freezing layer.

Freezing and Deflection Characteristics of Flexible Pavement Structure Using Frost Model Test (동상모형실험을 통한 아스팔트 포장체의 동결 및 처짐 특성)

  • Shin, Eun-Chul;Hwang, Soon-Gab;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.27-35
    • /
    • 2012
  • In this paper, the frost heaving and thawing characteristics of flexible pavement structure were evaluated in the large scale freezer which have a specification of temperature range $-20^{\circ}C{\sim}10^{\circ}C$ and $3.2m(L){\times}3.2m(B){\times}2.4m(H)$ in size. The insulated steel box with the size of $0.9m(L){\times}0.9m(B){\times}0.9m(H)$ was used to simulate actual pavement road structure. The variation of temperature, frost heave amount and frost heave pressure were measured through the instrument of TDS-602 data logger. LFWD (light falling weight deflectometer) was used to determine the change of deflection due to the frost heaving and thawing. Furthermore, the influence of aggregate layer to the freezing of the subgrade soil was studied to verify the function and effectiveness of the anti-freezing layer.

The Effect of Salt and Organic Solvents on the Interaction of Thionin-Sodium Dodecyl Sulfate System (Thionin-Sodium Dodecyl Sulfate계의 상호작용에 있어서 염 및 유기용매의 첨가효과에 관한 연구)

  • Kim, Sung-Hyun;Song, Ki-Dong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.779-785
    • /
    • 1994
  • The interaction between the cationic dye, thionin(Th) and the anionic surfactant, sodium dodecyl sulfate (SDS) has been investigated by absorption spectra. As the temperature of surfactant solution was increased in premicellar range(S/D=10, 80, and 160) which was much lower than the critical micelle concentration(CMC), the increment or decrement of the molar extinction coeffecient ratio appeared. It was found that the most stable temperature range of the oligomer aggregate in Th-SDS system at S/D=160 was below $60^{\circ}C$. With increasing the concentration of inorganic salt and organic solvents in Th-SDS system, ${\alpha}$-band was increased, but ${\gamma}$=band or J-band was decreased. The orders of ${\alpha}$-band increasing power were $Cl^-$>$ClO{_4}{^-}$>$SO{_4}{^{2-}}$>$NO{_3}{^-}$ and 2-propanol>ethanol>methanol>ethylene glycol.

  • PDF