• Title/Summary/Keyword: Aggregate temperature

Search Result 361, Processing Time 0.024 seconds

Characterization of a Cell Aggregation Factor from Aspergillus sp.LAM 94-142 (Aspergillus sp. LAM 94-142가 생산하는 세포응집물질의 특성)

  • 이동희;함동수
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.506-512
    • /
    • 1995
  • A cell aggregation factor produced by Aspergillus sp. LAM 94-142 was purified and partially characterized. The factor was purified about 15 folds from culture broth by IRA 420 and IRC 120 treatment, 1% NaCl added acetone precipitation, and Sepharose 4B column chromatography with overall yield of 48%. It was heteropolysaccharide consisted of mannose, arabinose, and glucose with a molar ratio, 31:17:2, and its molecular weight was estimated to be about 900,000 daltons by Sepharodse 4B gel filtration method. The optimum pH and temperature was 8 and 40$\circ$C, respectively. The factor was stable in pH range of 3-9 and at 100$\circ$C for 90 min. The cell aggregation activity of the factor was inhibited by the addition of Hg$^{2+}$, Fe$^{2+}$, Cu$^{2+}$, and some polypeptides such as milk casein or hemoglobin. The factor aggregated Bacillus subtilis, B. macerans, B. turingiensis, E. coli, Peudomonas aeruginosa, P. fluorescens, P. malophilia, and weakly aggregated Staphylococcus sp., Sarcina lutea, P. putida and Cryptococcus neoformnans, but it didn't aggregate various strains of Candida sp. and Saccharomyces sp.

  • PDF

An Experimental Study on the Freeze-Thaw Resistance of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 동결-융해 저항성에 관한 실험적 연구)

  • Yong, Suk-Ung;Lee, Joo-Hyung;Hong, Chang-Woo;Yun, Kyong-Ku;Park, Je-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.117-122
    • /
    • 1998
  • Concrete structures has been deteriorated by the freezing and thawing due to temperature gap. This study was conducted to evaluate durabilite of concrete which are increasingly demanded recently. Therefore the research of durability must be executed for application of waste foundry sand concrete real structures. Concrete durability must be executed for application of waste foundry sand concrete real structures. Concrete durability properties incorporating waste foundry sand was performed with the variable of W/C ratio, Sand/Waste foundry sand ratio and Air entrainment-Non air entrainment. Cylinder specimens were made and subjected to freezing and thawing cycle at $-18^{\cire}C$ and $4^{\cire}C$. Dynamic modulus of elasticity were evaluated as F/T cycle increase. The results show that strength of concrete is increased the W/C ratio decrease, the Sand/Waste foundry sand ratio increase when the concrete contains AE agent and decreasing WC ratio and AE concrete makes improved resistance of freezing and thawing improved. Especially, resistance of freezing and thawing is improved by Fine aggregate/Waste foundry sand ratio which is 50%, 25%, 0% in a row. Therefore it is turn out the waste foundry sand could be applied to concrete from the experiment.

  • PDF

Effect of Cement Alkali Content on ASR Expansibility by the Test Method of ASTM C 1260 (ASTM C 1260 실험방법에 의한 시멘트 알칼리 함량이 ASR 팽창성에 미치는 영향)

  • Jeon, Sung Il;Son, Hyeon Jang;Kwon, Soo Ahn;Yun, Kyung Ku
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.37-43
    • /
    • 2012
  • PURPOSES : This study is to evaluate the feasibility of setting the standard of cement alkali content by using ASTM C 1260(accelerated mortar bar test) METHODS : This study analyzes the ASR(alkali silica reaction) expansion of cement mortar bar based on the changes in the aggregate type(fine, coarse), cement type(ordinary, low alkali), and replacement contents of fly ash. ASR tests were conducted according to ASTM C 1260. RESULTS : In this test results, There is no big difference in the ASR expansion between ordinary cement and low alkali cement. From this test results, it was found that the variation of cement alkali content did not have a effect on ASR expansion because mortar bar was placed in a container with sufficient alkali aqueous solution at high temperature during the test process of ASTM C 1260. CONCLUSIONS : It is evidently clear that the alkali content of cement have a effect on ASR. But ASTM C 1260 is difficult to assess this effect.

Prediction of expansion of electric arc furnace oxidizing slag mortar using MNLR and BPN

  • Kuo, Wen-Ten;Juang, Chuen-Ul
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.111-118
    • /
    • 2017
  • The present study established prediction models based on multiple nonlinear regressions (MNLRs) and backpropagation neural networks (BPNs) for the expansion of cement mortar caused by oxidization slag that was used as a replacement of the aggregate. The data used for the models were obtained from actual laboratory tests on specimens that were produced with water/cement ratios of 0.485 or 1.5, within which 0%, 10%, 20%, 30%, 40%, or 50% of the cement had been replaced by oxidization slag from electric-arc furnaces; the samples underwent high-temperature curing at either $80^{\circ}C$ or $100^{\circ}C$ for 1-4 days. The varied mixing ratios, curing conditions, and water/cement ratios were all used as input parameters for the expansion prediction models, which were subsequently evaluated based on their performance levels. Models of both the MNLR and BPN groups exhibited $R^2$ values greater than 0.8, indicating the effectiveness of both models. However, the BPN models were found to be the most accurate models.

The Properties of Fluidity and Compressive Strength of Unsaturated Polyester Polymer Concrete According to Replacement Ratio of Rapidly-Chilled Steel Slag Fine aggregate (급냉 제강 슬래그 잔골재 대체율에 따른 불포화 폴리에스테르 폴리머 콘크리트의 유동성 및 압축강도 특성)

  • Kim, Jae-Won;Seo, Jung-Pil;Sun, Joung-Soo;Chi, Duck-Jin;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.43-46
    • /
    • 2007
  • This study dealt with the influence of the replacement ratio of rapidly-chilled steel slag on fluidity and compressive strength of unsaturated polyester polymer concretes. The rapidly-chilled steel slag used in this study, a by-product which is produced by refining pig iron during the manufacture of steel, was controled by a air-jet method which rapidly cools substance melted at a high temperature. Experimental results show that fluidity and compressive strength of unsaturated polyester polymer concretes increase with increasing replacement ratio of rapidly-chilled steel slag. Use of rapidly-chilled steel slag was found to be effective for improving fluidity and compressive strength of rapidly-chilled steel slag.

  • PDF

An Experimental Study on the Mechanical Properties of High Strength of High Strength Concrete Subject to High Temperature Heating (고온가열을 받은 고강도 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Tae-Gyu;Sin, Seung-Bong;Kim, Young-Sun;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.9-12
    • /
    • 2007
  • Recently, research and development related to high strength concrete for the high rise and large scale reinforced concrete building has been actively promoted in worldwide by national and private research project. But, it is reported that violent explosive explosion would be happened when it was exposed in fire. In the existed study, a explosion in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement paste and aggregate, and causes crack by thermal stress. In case of the Europe, Japan and America, they have studied the explosion for a long time. However it would hardly study the explosion in domestic, So it is needed base on mechanical properties of fire deterioration in high strength concrete. Therefore, this study is intend as an mechanical properties of specimen to high heating by heating and load test machine and $700^{\circ}C$. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

Time dependent equations for the compressive strength of self-consolidating concrete through statistical optimization

  • Hossain, K.M.A.;Lachemi, M.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.249-260
    • /
    • 2006
  • Self-consolidating concrete (SCC) in the fresh state is known for its excellent deformability, high resistance to segregation, and use, without applying vibration, in congested reinforced concrete structures characterized by difficult casting conditions. Such a concrete can be obtained by incorporating either mineral or chemical admixtures. This paper presents the results of an investigation to asses the applicability of Abram's law in predicting the compressive strength of SCC to any given age. Abram's law is based on the assumption that the strength of concrete with a specific type of aggregate at given age cured at a prescribed temperature depends primarily on the water-to-cement ratio (W/C). It is doubtful that such W/C law is applicable to concrete mixes with mineral or chemical admixtures as is the case for SCC where water to binder ratio (W/B) is used instead of W/C as the basis for mix design. Strength data of various types of SCC mixtures is collected from different sources to check the performance of Abram's law. An attempt has been made to generalize Abram's law by using various optimization methodologies on collected strength data of various SCC mixtures. A set of generalized equations is developed for the prediction of SCC strength at various ages. The performance of generalized equations is found better than original Abram's equations.

Effect of Aging Coprecipitate on the Synthesis Process of Ba-Ferrite (공심물의 숙성이 Ba-Ferrite의 합성과정에 미치는 영향)

  • 김태옥;김은동
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.340-346
    • /
    • 1983
  • The effect of aging coprecipitate obtained by the reaction of mixed solution 1.1 mol FeCl-0.1 mol $BaCl_2$ and 4.0 mol. NaOH-1.0 mol $K _2 CO_3$ on the synthesis process of Baferrite $(BaFe_{12}O_{19})$ was investigated by means of DTA, TGA, XRD and electron microscope. The no-aged coprecipitate seems to be the aggregate of amorphosus $Fe_3$ .$nH_2O$ and (1-X) $BaCO_3$.$xBa(OH)_2$, but the 30 days-aged to be composed of crystalline $Fe_2O_3H_2O$ and $BaCO_3$. The decomposition temperature of $BaCO_3$ in the coprecipitate increases from 400-$700^{\circ}C$ to 700-90$0^{\circ}C$ with increment of aging-time. In the no-aged coprecipitate Ba-ferrite is synthesized through the surface reaction of amorphous Fe_2O_3$ and skeleton crystal BaO at 800-90$0^{\circ}C$ with more compact crystalization. During calcination of the 30 days-aged coprecibitate the intermediate phase BaFe_2O_4$ is formed at 600-$700^{\circ}C$ and completely transformed to Ba-ferrite at 800-90$0^{\circ}C$.

  • PDF

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes (고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석)

  • KIM, AERHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

Reliability studies on RC beams exposed to fire based on IS456:2000 design methods

  • Balaji, Aneesha;Aathira, M.S.;Pillai, T.M. Madhavan;Nagarajan, Praveen
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.853-866
    • /
    • 2016
  • This paper examines a methodology for computing the probability of structural failure of reinforced concrete beams subjected to fire. The significant load variables considered are dead load, sustained live load and fire temperature. Resistance is expressed in terms of moment capacity with random variables taken as yield strength of steel, concrete class (or grade of concrete), beam width and depth. The flexural capacity is determined based on the design equations recommended in Indian standard IS456:2000. Simplified method named $500^{\circ}C$ isotherm method detailed in Eurocode 2 is incorporated for fire design. A transient thermal analysis is conducted using finite element software ANSYS$^{(R)}$ Release15. Reliability is evaluated from the initial state to 4h of fire exposure based on the first order reliability method (FORM). A procedure is coded in MATLAB for finding the reliability index. This procedure is validated with available literature. The effect of various parameters like effective cover, yield strength of steel, grade of concrete, distribution of reinforcement bars and aggregate type on reliability indices are studied. Parameters like effective cover of concrete, yield strength of steel has a significant effect on reliability of beams. Different failure modes like limit state of flexure and limit state of shear are checked.