• Title/Summary/Keyword: Aggregate block structure

Search Result 9, Processing Time 0.026 seconds

Performance Evaluation of Recycled Aggregate Concrete Block Reinforced with GFRP (GFRP로 보강된 순환골재콘크리트 블록의 성능평가)

  • Kim, Yongjae;Lee, Hyeongi;Park, Cheolwoo;Sim, Jongsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6565-6574
    • /
    • 2013
  • Precast concrete blocks are used mainly for score protection, slope protection and riverbed structure protection, etc. Because these concrete blocks are exposed to water or wetting environments, the steel rebar used as reinforcements in concrete blocks can corrode easily. Corrosion of the steel rebar tends to reduce the performance and service life of the concrete blocks. In this study, Glass Fiber Reinforced Polymer(GFRP) rebar, which does not corrode, was applied instead of a steel rebar to prevent performance degradation of the blocks. Recycled concrete aggregate and high early strength cement(HESC) were used in the concrete mix for field applicability. The experiment results showed that the workability and form removal strength of the recycled aggregate concrete using HESC showed comparable results to normal concrete and the compressive strength at 28 days increased by about 18% compared to normal concrete. The load resistance capacity of the recycled aggregate concrete blocks reinforced with a GFRP rebar increased by approximately 10~30% compared to common concrete block.

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

Hexagonal to Cubic Phase Transition in the $D_2O$-Induced Reverse Micellar Solution of a PEO-b-PPO-b-PEO Block Copolymer

  • Kim, Do-Hyun;Ko, Yoon-Soo;Kwon, Yong-Ku
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.62-65
    • /
    • 2008
  • The morphology of the $D_2O$-induced reverse micellar structure of an amphiphilic block copolymer of poly( ethylene oxide )-b-poly(propylene oxide )-b-poly( ethylene oxide )($EO_{76}PO_{29}EO_{76}$) was investigated in hydrophobic media by small angle neutron scattering (SANS). Increasing $D_2O$ in the styrene/divinylbenzene solution of $EO_{76}PO_{29}EO_{76}$ led to a change in morphology of the reverse micelles from a short range ordered molecular aggregate to a hexagonally arranged micelle, and further to a spherical micelle.

Characteristics of Drainage Pervious Block Considering Urban Rainfall (도심지 강우 특성을 고려한 투수성 보도블록의 배수 특성)

  • Seo, Da-Wa;Yun, Tae-Sup;Youm, Kwang-Soo;Jeong, Sang-Seom;Mun, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.53-64
    • /
    • 2015
  • This study presents the experimental results of pervious blocks subjected to a series of unique inflow conditions in urban area. The measured properties include the strength, permeability, drainage capacity and runoff, and evaporation for blocks made of two different size of aggregates. Results revealed that the strength satisfies the Korean Standard regardless of aggregate size whereas the immediate runoff occurred for the block with small size aggregate. On the other hand, the block with large aggregates allowed the drainage upon the initial inflow condition, which became hampered to induce the runoff by subsequent inflow. It was attributed to the fact that the capillary water often served as the hydraulic barrier in partially saturated condition. The salient observation indicated that the runoff highly depended on the evaporation and pre-wetting condition as well as the porosity and pore connectivity. The bilinear evaporate rate that makes the degree of saturation vary also had great influence on deterining the time-dependent runoff.

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes (고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석)

  • KIM, AERHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

Effects of Numerical Modeling on Concrete Heterogeneity (콘크리트 비균질성에 대한 수치모델의 영향)

  • Rhee, In-Kyu;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.189-198
    • /
    • 2006
  • The composition of most engineering materials is heterogeneous at some degree. It is simply a question of scale at which the level of heterogeneity becomes apparent. In the case of cementitious granular materials such as concrete the heterogeneity appears at the mesoscale where it is comprised of aggregate particles, a hardened cement paste and voids. Since it is difficult to consider each separate particle in the topological description explicitly, numerical models of the meso-structure are normally confined to two-phase matrix particle composites in which only the larger inclusions are accounted for. 2-D and 3-D concrete blocks(Representative Volume Element, RVE) are used to simulating heterogeneous concrete meso-structures in the form of aggregates in the hardened mortar with nearly zero-thickness linear or planar interfaces. The numerical sensitivity of these meso-structures are Investigated with respect to the different morphologies of heterogeneity and the different level of coupling constant among fracture mode I, II and III. In addition, a numerically homogenized concrete block in 3-D using Hashin-Shtrikman variational bounds provides an evidence of the effective cracking paths which are quite different with those of heterogenous concrete block. However, their average force-displacement relationship show a pretty close match each other.

Automatic generation of higher level design diagrams (상위 수준 설계 도면의 자동 생성)

  • Lee, Eun-Choul;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.23-32
    • /
    • 2005
  • The automatic generation of circuit diagrams has been practically used in the HDL based design for decades. Nevertheless, the diagrams became too complicated for the designers to identify the signal flows in the RTL and system level designs. In this paper, we propose four techniques to enhance the roadability of the complicated diagrams. They include i) the transformation of repetitive instances and terminals into vector forms, ii) an improved loop breaking algorithm, iii) a flat tap which simplifies the two level bus ripping structure that is required for the connection of a bundle net to multiple buses, and iv) the identification of block strings, and alignment of the corresponding blocks. Towards validating the proposed techniques, the diagrams of an industrial strength design m generated. The complexity of the diagrams has been reduced by up to $90\%$ in terms of the number of wires, the aggregate wire length, and the area.

Implementation of Secure System for Blockchain-based Smart Meter Aggregation (블록체인 기반 스마트 미터 집계 보안 시스템 구축)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • As an important basic building block of the smart grid environment, smart meter provides real-time electricity consumption information to the utility. However, ensuring information security and privacy in the smart meter data aggregation process is a non-trivial task. Even though the secure data aggregation for the smart meter has been a lot of attention from both academic and industry researchers in recent years, most of these studies are not secure against internal attackers or cannot provide data integrity. Besides, their computation costs are not satisfactory because the bilinear pairing operation or the hash-to-point operation is performed at the smart meter system. Recently, blockchains or distributed ledgers are an emerging technology that has drawn considerable interest from energy supply firms, startups, technology developers, financial institutions, national governments and the academic community. In particular, blockchains are identified as having the potential to bring significant benefits and innovation for the electricity consumption network. This study suggests a distributed, privacy-preserving, and simple secure smart meter data aggregation system, backed up by Blockchain technology. Smart meter data are aggregated and verified by a hierarchical Merkle tree, in which the consensus protocol is supported by the practical Byzantine fault tolerance algorithm.

A Study on the Strategy of IoT Industry Development in the 4th Industrial Revolution: Focusing on the direction of business model innovation (4차 산업혁명 시대의 사물인터넷 산업 발전전략에 관한 연구: 기업측면의 비즈니스 모델혁신 방향을 중심으로)

  • Joeng, Min Eui;Yu, Song-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-75
    • /
    • 2019
  • In this paper, we conducted a study focusing on the innovation direction of the documentary model on the Internet of Things industry, which is the most actively industrialized among the core technologies of the 4th Industrial Revolution. Policy, economic, social, and technical issues were derived using PEST analysis for global trend analysis. It also presented future prospects for the Internet of Things industry of ICT-related global research institutes such as Gartner and International Data Corporation. Global research institutes predicted that competition in network technologies will be an issue for industrial Internet (IIoST) and IoT (Internet of Things) based on infrastructure and platforms. As a result of the PEST analysis, developed countries are pushing policies to respond to the fourth industrial revolution through cooperation of private (business/ research institutes) led by the government. It was also in the process of expanding related R&D budgets and establishing related policies in South Korea. On the economic side, the growth tax of the related industries (based on the aggregate value of the market) and the performance of the entity were reviewed. The growth of industries related to the fourth industrial revolution in advanced countries overseas was found to be faster than other industries, while in Korea, the growth of the "technical hardware and equipment" and "communication service" sectors was relatively low among industries related to the fourth industrial revolution. On the social side, it is expected to cause enormous ripple effects across society, largely due to changes in technology and industrial structure, changes in employment structure, changes in job volume, etc. On the technical side, changes were taking place in each industry, representing the health and medical sectors and manufacturing sectors, which were rapidly changing as they merged with the technology of the Fourth Industrial Revolution. In this paper, various management methodologies for innovation of existing business model were reviewed to cope with rapidly changing industrial environment due to the fourth industrial revolution. In addition, four criteria were established to select a management model to cope with the new business environment: 'Applicability', 'Agility', 'Diversity' and 'Connectivity'. The expert survey results in an AHP analysis showing that Business Model Canvas is best suited for business model innovation methodology. The results showed very high importance, 42.5 percent in terms of "Applicability", 48.1 percent in terms of "Agility", 47.6 percent in terms of "diversity" and 42.9 percent in terms of "connectivity." Thus, it was selected as a model that could be diversely applied according to the industrial ecology and paradigm shift. Business Model Canvas is a relatively recent management strategy that identifies the value of a business model through a nine-block approach as a methodology for business model innovation. It identifies the value of a business model through nine block approaches and covers the four key areas of business: customer, order, infrastructure, and business feasibility analysis. In the paper, the expansion and application direction of the nine blocks were presented from the perspective of the IoT company (ICT). In conclusion, the discussion of which Business Model Canvas models will be applied in the ICT convergence industry is described. Based on the nine blocks, if appropriate applications are carried out to suit the characteristics of the target company, various applications are possible, such as integration and removal of five blocks, seven blocks and so on, and segmentation of blocks that fit the characteristics. Future research needs to develop customized business innovation methodologies for Internet of Things companies, or those that are performing Internet-based services. In addition, in this study, the Business Model Canvas model was derived from expert opinion as a useful tool for innovation. For the expansion and demonstration of the research, a study on the usability of presenting detailed implementation strategies, such as various model application cases and application models for actual companies, is needed.