• Title/Summary/Keyword: Aggregate Ratio

Search Result 1,129, Processing Time 0.031 seconds

Effect of Metakaolin on the Strength Properties of Lightweight Aggregate Cellular Concrete (경량골재기포콘크리트에서의 메타카올린 강도 증가 효과)

  • Hwang, Eun-A;Lee, Haeng-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.489-490
    • /
    • 2009
  • In this study, the experiment was carried out to investigate the effect of metakaolin on the compressive strength of lightweight aggregate cellular concrete. For this purpose, five level replacement ratio of metakaolin were selected.

  • PDF

Preparation of Lightweight Aggregate Using Glass Abrasive Sludge and Effects of Pores on the Aggregate Properties (유리연마슬러지를 사용한 경량골재 제조 및 골재의 내부기공이 물성에 미치는 영향에 관한 연구)

  • Chu, Yong-Sik;Lee, Jong-Kyu;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.37-42
    • /
    • 2005
  • Lightweight aggregate was made using glass abrasive sludge and graphite in this study. This study tried to draw the correlation between lightweight aggregate's properties and internal pore. The precursor was made by added different graphite contents and was burned for 20 min. at $700^{circ}C$ and $800^{circ}C$. The volume change of aggregate was checked at before and after homing, and confirmed that the homing temperature effected more than expanding agent on volume change. The size and area of pore in aggregate increased according to the amount of expanding agent and homing temperature but it didn't bring about big effect above $1\%$ of expanding agent. The absorbtion ratio, thermal conductivity and porosity have a high correlation, so each coefficient of correlation showed above $0.8\pm$.

Quality of High Volume Blast Furnace Slag Mortar Depending on Desulfurization Gypsum Treating Methods and Fine Aggregate Type (탈황석고의 가공법 및 잔골재종류 변화에 따른 고로슬래그 미분말 다량 치환 모르타르의 품질 특성)

  • Han, Cheon-Goo;Lee, Dong-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • In this research, based on the condition of using desulfurization gypsum(FGD) as a stimulator for high-volume blast furnace slag cement mortar, sieving and heating process methods of removing activated carbon in FGD were compared with the non-processed FGD and recycled and natural fine aggregates were compared for suitable aggregate to be used. According to the result of experiment, sieving with 0.3mm was more efficient than $500^{\circ}C$ heating for processing the FGD, and recycled fine aggregate showed more favorable result than natural fine aggregate at the FGD content was 5 to 10%. On the other hand, the mortar mixture including recycled fine aggregate had a high drying shrinkage, and absorption ratio, and thus specific limitations on applying recycled fine aggregate should be required.

Improvement on the Properties of Recycled Aggregate Concrete Using Pozzolanic Materials (포졸란 재료를 사용한 순환골재 콘크리트의 품질 개선)

  • Moon, Dae-Joong;Kim, Wan-Jong;Kim, Hak-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • The aggregate, which does not satisfy the standard of KS F 2573, was selected for this investigation. The 28day compressive strength of recycled aggregate concrete without pozzolan material was 21.7MPa, which was less than the strength of concrete made with crushed stone. However, the compressive strength at 28 days was improved by mixing early rapid hardening cement to the cement at the weight ratio of 2.5%. Furthermore, the compressive strength at 91 days and 180 days increased significantly by adding fly ash, slag powder, and diatom powder. The tensile strength of recycled aggregate concrete with pozzolan material also increased about 40% compared to the general concrete. Futhermore, the shrinkage and creep of recycled aggregate concrete with fly ash and slag powder was a little decreased that of recycled aggregate concrete with fly ash and diatom powder. Relationship between compressive strength and creep coefficient was shown to the linear relation like as ${\sigma}_c=-30CF+404$.

  • PDF

Properties of Lean Mixed Mortar with Various Replacement Ratio of Coal Gasification Slag (석탄가스화발전 용융슬래그의 치환율 변화에 따른 빈배합 모르타르의 특성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.391-399
    • /
    • 2019
  • This study reviewed the possibility of recycling into exhausted aggregate resources in Korea as a means of utilizing coal gasification slag(CGS) from integrated gasification combined cycle(IGCC) while being commissioned in order to introduce the new system to Korea. In other words, in order to solve the problem of insufficient aggregate resources, CGS generated by IGCC as a residual aggregate for concrete secondary products, which is an empty mortar, was considered to replace CGS in the range of 0 to 100 % for mixed residual aggregate mixed with crushed sand A(CSa) of good quality and sea sand(SS) of deep particles, which are the most commonly used in the domestic construction industry. According to the study, replacing CGS with CSa or crushed sand B(CSb)+SS by 25 % to 50 % resulted in good results in the aspect of the granularity of the aggregate and the workability and compressive strength of cement mortar, which were found to be usable.

Mechanism of Strength Development in Ultra High Strength Concrete Using the Electric Arc Furnace Oxidizing Slag as Fine Aggregate (초고강도 콘크리트에서 전기로 산화 슬래그 잔골재 사용에 의한 강도 증진 기구)

  • Lee, Seung-Heun;Lim, Doo-Sub;Lee, Seung-Hoon;Lee, Joo-Ha
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.3-9
    • /
    • 2013
  • In ultra high strength concrete, when electric arc furnace oxidizing slag is substituted for sea sand as fine aggregate, compressive strength was improved about 15 MPa. To figure out the cause of the improvement in compressive strength, this study considered the dissolution characteristics of Ca component in fine aggregate and examined the microstructure, porosity, microhardness, and Ca/Si mole ratio on the interface of fine aggregate and paste. And to examine the mechanism of strength improvement resulted from the shape of fine aggregate, this study measured the surface roughness of fine aggregate with AFM. According to the result of this experiment, the mechanisms of strength improvement in ultra high strength concrete resulted from the use of electric arc furnace oxidizing slag as fine aggregate can be divided into chemical and physical mechanisms. In the chemical mechanism, the soluble Ca component contained in electric arc furnace oxidizing slag is dissolved and forms a hydrate between fine aggregate and paste to improve the interlocking strength of fine aggregate-paste. Also, it makes the microstructure around the fine aggregate. And in the physical mechanism, electric arc furnace oxidizing slag has a twice greater surface roughness than sea sand, so the interlocking strength between fine aggregate and paste increases, which contributes to the development of compressive strength.

A Study on the Development Lightweight Aggregate using Recycled-Paint for Reduction in Freezing Ground (단열골재 개발을 통한 동토방지 기술개발에 관한 연구)

  • Moon, Jong-Wook;Back, Min-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • This study is progressed function ratio, it's trued taste by an experiment to present data for human work light weight aggregate development that use clink ash progressed liquid limit, small success limit, wear loss in quantity, sand equivalent, sieve cutting examination. 80:20's match of function rain examination is 1.4, and that use rubble aggregate as recyeled-panit lightweight aggregate's capacity ratio increases by 1.0 increase of function rain many. Also, examination multiplied delicate flavor gradually according to increase of the mixing rate, and absorption coefficient increased. This is judged by phenomenon that appear by special quality upper recycled-panit of polystyrene bid and porosity's increase between lightweight aggregate. It is case that use aggregate of wear loss in quantity is 13.5 in sand equivalent and a wear loss in quantity experiment and although case that mix 20% increases by 14.4, this phenomenon by weak tissue of lightweight aggergate be judged. When it's as a these experiment, the statue prevention floor of a street improvement specifications is prescribing so that satisfy by sand equivalent 20, CBR 10. This is showed result that this satisfies in quality standard all in match experiment ago that see.

Physical and Mechanical Properties of Synthetic Lightweight Aggregate Concrete (인공경량골재(人工輕量骨材) 콘크리트 물리(物理)·역학적(力學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.182-193
    • /
    • 1997
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. Therefore, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. The main purpose of the work described in this paper were to establish the physical and mechanical properties of synthetic lightweight aggregate concrete using perlite on fine aggregate and expanded clay, pumice stone on coarse aggregate. The test results of this study are summarized that the water-cement ratio was shown 47% using expanded clay, 56% using pumice stone on coarse aggregate, unit weight was shown $l,622kgf/m^3$ using expanded clay, $l,596kgf/m^3$ using pumice stone on coarse aggregate, and the absorption ratio was shown same as 17%. The compressive strength was shown more than $228kgf/cm^2$, tensile and bending strength was more than $27kgf/cm^2$, $58kgf/cm^2$ at all types, and rebound number with schmidt hammer was increased with increase of compressive strength. The static modulus was $1.12{\times}10^5kgf/cm^2$ using expanded clay, $1.09{\times}10^5kgf/cm^2$ using pumice stone on coarse aggregate, and stress-strain curves were shown that increased with increase of stress, and the strain on the maximum stress was shown identical with $2.0{\times}10^{-3}$, approximately.

  • PDF

An Experimental Study on the Properties of Lightweight Concrete Using Expanded Clay (팽창점토를 사용한 경량콘크리트의 특성에 관한 실험적 연구)

  • Kim, Jong-In;Choi, Young-Wha;Ha, Sang-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.225-232
    • /
    • 2002
  • The purpose of this study is to find the mechanical properties of lightweight concrete using expanded clay. Thus, slump, air content, compressive strength, elastic modulus, tensile strength, length change ratio, unitweight change ratio and absorption of lightweight concrete have been investigated. The conclusions of this study are as follows ; 1. The loss of slump and air content of concrete increased as the expanded clay content increased and the size of coarse aggregate decreased. 2. The compressive strength of concrete using 100% expanded clay of 13, 19mm size at 28 days were respectively 282, $252kgf/cm^2$. 3. The elastic modulus and tensile strength of concrete decreased with increase of expanded clay content. 4. The length change ratio of concrete increased with the larger coarse aggregate size, and decreased with the increase of expanded clay content. 5. The unit weight of concrete decreased with the increase of expanded clay content, and the ratio of that was larger at the early age.

  • PDF

Numerical investigation on tortuosity of transport paths in cement-based materials

  • Zuo, Xiao-Bao;Sun, Wei;Liu, Zhi-Yong;Tang, Yu-Juan
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.309-323
    • /
    • 2014
  • Based on the compositions and structures of cement-based materials, the geometrical models of the tortuosity of transport paths in hardened cement pastes, mortar and concrete, which are associated with the capillary porosity, cement hydration degree, mixture particle shape, aggregate volume fraction and water-cement ratio, are established by using a geometric approach. Numerical simulations are carried out to investigate the effects of material parameters such as water-cement ratio, volume fraction of the mixtures, shape and size of aggregates and cement hydration degree, on the tortuosity of transport paths in hardened cement pastes, mortar and concrete. Results indicate that the transport tortuosity in cement-based materials decreases with the increasing of water-cement ratio, and increases with the cement hydration degree, the volume fraction of cement and aggregate, the shape factor and diameter of aggregates, and the material parameters related to cement pastes, such as the water-cement ratio, cement hydration degree and cement volume fraction, are the primary factors that influence the transport tortuosity of cement-based materials.