• Title/Summary/Keyword: Aggregate Mix Design

Search Result 172, Processing Time 0.021 seconds

Durability Properties of Low Carbon Green Concrete (저탄소 그린콘크리트의 내구 특성)

  • Cho, Il Ho;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.11-17
    • /
    • 2013
  • This study was performed to evaluate the chlorine ion penetration resistance, chemical resistance and freezing and thawing resistance used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furance slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performance of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for offshore structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for offshore structure materials.

Development of manufacturing technology of Artificial Reef Mixed with Reclamation Coal Ash (매립석탄회를 활용한 인공어초 제조기술 개발)

  • Han Sang-Mook;Cho Myoung-Suk;Song Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.125-128
    • /
    • 2005
  • Coal ash, which is generated as a byproduct at a coal thermal power plant, can be classified into fly ash and bottom ash. Most of fly ash is recycled as an admixture for concrete, while bottom ash is not recycled but dumped into an ash landfill disposal site. So, if a technology for recycling bottom ash efficiently, which is increasingly generated year by year, is not developed, environmental problems will take place as a matter course and further an enormous economical cost will be required for construction of additional ash landfill disposal sites. In this study an optimum mix proportion design and a quality control method for utilizing the reclamation coal ash as an aggregate for secondary concrete products such as an artificial reef was successfully developed.

  • PDF

Creep analysis of CFT columns subjected to eccentric compression loads

  • Han, Bing;Wang, Yuan-Feng;Wang, Qian;Zhang, Dian-Jie
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.291-304
    • /
    • 2013
  • By considering the creep characteristics of concrete core under eccentric compression, a creep model of concrete filled steel tubes (CFT) columns under eccentric compressive loads is proposed based on the concrete creep model B3. In this proposed model, a discrete element method is introduced to transform the eccentric loading into axial loading. The validity of the model is verified by comparing the predicting results with the published creep experiments results on CFT specimens under compressive loading, together with the predicting values based on other concrete creep models, such as ACI209, CEB90, GL2000 and elastic continuation and plastic flow theory. By using the proposed model, a parameters study is carried out to analysis the effects of practical design parameters, such as concrete mix (e.g. water to cement ratio, aggregate to cement ratio), steel ratio and eccentricity ratio, on the creep of CFT columns under eccentric compressive loading.

Behavior of fibre reinforced cementitious material-filled steel tubular columns

  • Kharoob, O.F.;Taman, M.H.
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.465-472
    • /
    • 2017
  • This paper presents an experimental study, investigating the compressive behavior of glass-fibre reinforced and unreinforced cementitious material-filled square steel tubular (GFCMFST and CMFST) columns. The specimens were manufactured by using high performance cementitious materials without using coarse aggregate. The influence of adding glass-fibres to the mix on the behavior of both axially and eccentrically loaded columns is considered. It was found that adding glass fibre improvesthe confinement behavior, the axial compressive strength, the stiffness and the toughness of both axially and eccentrically loaded columns. The compressive strength of axially loaded columns is compared with strength predictions according to EC4 and the AISC specification. It was found that the design predictions according to EC4 and the AISC codes provide conservative results for CMFST and GFCMFST columns. Alternatively, the axial load-bending moment interaction diagrams specified in theEC4 are conservative for the eccentrically tubular CMFST and GFCMFST tested columns.

Effect of Recycled Coarse Aggregate (RCA) Replacement Level on the Bond Behaviour between RCA Concrete and Deformed Rebars (순환 굵은골재의 혼입률에 따른 콘크리트와 이형철근의 부착 거동)

  • Jang, Yong-Heon;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.123-130
    • /
    • 2010
  • In this study, mixed recycled coarse aggregate (RCA) was produced by mixing RCA from waste concrete in order to evaluate a new method of RCA production. Bond strength between reinforcing bars and RCA concrete was qualitatively evaluated as a part of continuous studies to establish design code of reinforced concrete structural members using recycled aggregate. For practical application, specimens were manufactured with the ready mix RCA concrete. Parameters investigated include: concrete compressive strength (i.e 21, 27 and 40 MPa), replacement levels (i.e 0, 30, 60 and 100%), bar position (i.e vertical and horizontal) and bar location (75 and 225 mm). For the pull-out test, each specimen was in the form of a cube, with each side of 150 mm in length and a deformed bar, 16 mm in diameter, was embedded in the center of each specimen. From the test results, the most of HT type specimen with compressive strength of 21 and 27 MPa showed lower bond strength than the ones provided in CEB-FIP and considered in reinforcement location factor ($\alpha\;=\;1.3$). It was reasoned that bonded area of top bar specimen was reduced at the soffit of reinforcement because of bleed water of fresh concrete. Therefore the reinforcement location factor in current KCI design code should be reviewed and modified.

Comparison and Evaluation of Dynamic Modulus of Hot Mix Asphalt with Different Shift Factors (전이함수 결정법에 따른 아스팔트 혼합물의 동탄성계수 비교평가)

  • Kim, Hyun-Oh;Lee, Kwan-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.49-61
    • /
    • 2005
  • The dynamic modulus of hot mix asphalt can be determined according to the different combinations of testing temperature and loading frequency. The superposition rule is adapted to get the master curve of dynamic modulus for each hot mix asphalt. There are couple of different methods to get the shift factor which is a key for making the master curve. In this paper, Arrehnius, 2002 AASHTO, and experimental method was employed to get the master curve. Evaluation of dynamic modulus for 25mm base course of hot mix asphalt with granite aggregate and two asphalt binders(AP-3 and AP-5) was carried out. Superpave Level 1 Mix Design with gyratory compactor was adopted to determine the optimum asphalt binder content(OAC) and the measured ranges of OAC were between 4.1% and 4.4%. UTM was used for laboratory test. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature(-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies(0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The shift factor and activation energy for determination of master curve were calculated.

  • PDF

Study on the Proper Emulsified-Asphalt Content for a Cold-Recycling Asphalt Mixture (상온 재활용 아스팔트 혼합물의 적정 유화아스팔트 함량 선정 연구)

  • Yang, Sung Lin;Son, Jung Tan;Lee, Kang Hun
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • PURPOSES : The purpose of this study is to evaluate the mechanical properties of a cold-recycling asphalt mixture used as a base layer and to determine the optimum emulsified-asphalt content for ensuring the mixture's performance. METHODS : The physical properties (storage stability, mixability, and workability) of three types of asphalt emulsion (CMS-1h, CSS-1h, and CSS-1hp) were evaluated using the rotational viscosity test. Asphalt emulsion residues, prepared according to the ASTM D 7497-09 standard, were evaluated for their rheological properties, including the $G*/sin{\delta}$and the dynamic shear modulus (${\mid}G*{\mid}$). In addition, the Marshall stability, indirect tensile strength, and tensile-strength ratio (TSR) were evaluated for the cold-recycling asphalt mixtures fabricated according to the type and contents of the emulsified asphalt. RESULTS : The CSS-1hp was found to be superior to the other two types in terms of storage stability, mixability, and workability, and its $G*/sin{\delta}$ value at high temperatures was higher than that of the other two types. From the dynamic shear modulus test, the CSS-1hp was also found to be superior to the other two types, with respect to low-temperature cracking and rutting resistance. The mixture test indicated that the indirect tensile strength and TSR increased with the increasing emulsified-asphalt content. However, the mixtures with one-percent emulsified-asphalt content did not meet the national specification in terms of the aggregate coverage (over 50%) and the indirect tensile strength (more than 0.4 MPa). CONCLUSIONS : The emulsified-asphalt performance varied greatly, depending on the type of base material and modifying additives; therefore, it is considered that this will have a great effect on the performance of the cold-recycling asphalt pavement. As the emulsified-asphalt content increased, the strength change was significant. Therefore, it is desirable to apply the strength properties as a factor for determining the optimum emulsified-asphalt content in the mix design. The 1% emulsified-asphalt content did not satisfy the strength and aggregate coverage criteria suggested by national standards. Therefore, the minimum emulsified-asphalt content should be specified to secure the performance.

The Property Evaluation of the Marine Concrete Structure Constructed in the Period of Japanese Occupancy (YoungDo Bridge) (일제시대 건설된 해양 콘크리트구조물의 물성 평가(영도대교))

  • Park, Dong-Cheon;Ahn, Jae-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • YoungDo bridge is the first suspension bridge in Busan which experienced several times repair and reinforcement after completion in 1934. The bridge is under demolition for extension and restoration work since 2011. The purpose of this research is to establish data base about modern concrete. The mix design of the concrete is like that cement : fine aggregate : coarse aggregate = 1 : 2 : 4 or 1 : 3 : 6 by the parts. The compressive strength is in the ranges from 50 to 55 MPa and the elastic modulus is in the ranges from 25 to 35 GPa. From the fact that the deviation is less than 10 %, considerably high quality control was conducted in those days. The carbonation depth is 5.92 cm at the bridge post and 14.3 cm at the machine room. That is why ocean environment keeps the high humidity. The diffusion coefficient of chloride ion through the pores in concrete is 1.052e-12 $m^2/s$ from the regression analysis using the experiment data. The water cement ration is estimated at approximately 35 % in case if the concrete using ordinary Portland cement.

The Durability of the Concrete Using Bottom Ash as Fine Aggregate (바텀애시를 잔골재로 사용한 콘크리트의 내구성능에 관한 연구)

  • Park, Seung-Ho;Lee, Jeong-Bae;Kim, Seong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.349-355
    • /
    • 2016
  • This study is about the reuse of bottom ash, which is released as a necessity in thermal power plant. In general, coal-ash are classified as fly-ash, bottom-ash, cinder-ash. Of these, a large amount of fly ash is being recycled as cement substitutes. While, recycling rates of bottom ash are the lowest due to its porosity and high absorption. In this study, the durability of the concrete using bottom ash as a concrete fine aggregate was evaluated. The using level of the bottom ash ranges to step-by-step from 0% to 30%. According to the result of the durability test, regardless of the presence of the bottom ash, freeze-thaw durability could be secured by air entrainment. In case of the resistance to chloride ions penetration, the length change, and the effects on heavy metals, the replacement of bottom ash as fine aggregate was not critical. Although carbonation penetration was higher as the replacement level of bottom ash increased, the experiment showed that it could be possible to use bottom ash as concrete fine aggregate with proper mix design.

Performance of Constructed Facilities: Pavement Structural Evaluation of William P Hobby Airport in Houston, Texas

  • Kim, Sung-Hee;Jeong, Jin-Hoon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • The results of a recent case study for material characterizations and structural evaluation to design asphalt overlay thickness of William P Hobby airport in Houston, Texas are presented herein. The existing runway 12R-30L of Hobby airport consisted of thick asphalt overlay over Portland Cement Concrete (PCC) and the localized surface shoving as evident in the closure of surface groove has been observed recently. Using the field cored asphalt concrete mixtures, measurements of percent air voids, asphalt content and aggregate gradation were conducted to find out the causations of surface shoving and groove closure. The FAA layered elastic program, LEDFAA was utilized to evaluate pavement structural conditions for new asphalt overlay. Two different composition assumptions for existing pavement were made to evaluate the pavement as followings: 1) APC, Asphalt Concrete Overlay over PCC pavement and 2) AC, Asphalt Concrete pavement. Based on laboratory testing results, a ratio of percent passing #200 to asphalt content ranged 1.1 to 2.2, which is considered a high ratio and a tendency of tender mix design was observed. Thus, the localized surface shoving and groove closure of the runway 12R-30L could be attributed to the use of excessive fine contents and tender mix design. Based on the structural evaluation results, it was ascertained that the analysis assuming the pavement structure as AC pavement gives more realistic structural life when the asphalt overlay is thicker enough compared to PCC layer because the existing PCC pavement under asphalt overlay acts more like a high quality base material.