• Title/Summary/Keyword: Age-related macular degeneration(AMD)

Search Result 24, Processing Time 0.018 seconds

Ethanol Extract of Glycyrrhiza uralensis Protects Against Oxidative Stress-induced DNA Damage and Apoptosis in Retinal Pigment Epithelial Cells (망막색소상피세포에서 감초 추출물의 산화적 스트레스에 의한 DNA 손상 및 apoptosis 유발의 차단 효과)

  • Kim, So Young;Kim, Jeong-Hwan;Kim, Sung Ok;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1273-1280
    • /
    • 2019
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly population, and damage to retinal pigment epithelial (RPE) cells due to oxidative stress contributes to the development of AMD. Glycyrrhiza uralensis Fischer is one of the most widely used herbal medicines for the treatment of various diseases in Asian countries. Although recent studies indicated that treatment with G. uralensis can protect cells from oxidative stress, its mechanisms in RPE cells remain unknown. We evaluated the effect of a G. uralensis ethanol extract (GU) on $H_2O_2$-induced oxidative injury in ARPE-19 RPE cells. The GU pretreatment attenuated reactive oxygen species (ROS) generation induced by $H_2O_2$, which was associated with induced expression of nuclear factor erythroid-derived-2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). GU also suppressed $H_2O_2$-induced DNA damage and mitochondrial dysfunction. The inhibitory effect of GU on $H_2O_2$-induced apoptosis was associated with the protection of caspase-3 activation. Overall, GU appeared to protect RPE cells from oxidative injury by inhibiting DNA damage and reducing apoptosis. Further studies are needed to determine the regulation of Nrf2-mediated HO-1 expression, but our results suggest the possibility of using GU to reduce the risk of AMD.

Comparison of Retinal Waveform between Normal and rd/rd Mouse (정상 마우스와 rd/rd 마우스의 망막파형 비교)

  • Ye, Jang-Hee;Seo, Je-Hoon;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.157-163
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa or age-related macular degeneration. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we investigated differences of the retinal waveforms in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: 50 $k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. In normal mice (C57BL/6J strain) of postnatal day 28, only short duration (<2 ms) retinal spikes were recorded. In rd/rd mice (C3H/HeJ strain), besides normal spikes, waveform with longer duration (~100 ms), the slow wave component was recorded. We attempted to understand the mechanism of this slow wave component in degenerate retina using various synaptic blockers. We suggest that stronger glutamatergic input from bipolar cell to the ganglion cell in rd/rd mouse than normal mouse contributes the most to this slow wave component. Out of many degenerative changes, we favor elimination of the inhibitory horizontal input to bipolar cells as a main contributor for a relatively stronger input from bipolar cell to ganglion cell in rd/rd mouse.

  • PDF

Sex Steroid Hormone and Ophthalmic Disease (성호르몬과 안질환)

  • Kim, Jin-Ju;Yu, Hyeong-Gon;Ku, Seung-Yup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.2
    • /
    • pp.89-98
    • /
    • 2010
  • Sex and its tropic hormones influence the lacrimal system, corneal anatomy and disease, aqueous humor dynamics and glaucoma, crystalline lens and cataract, and retinal disease. Dry eye occurs especially frequently during pregnancy, oral contraceptive use, and after menopause, during which androgen levels decrease. Androgen control development, differentiation, and lipid production of sebaceous glands throughout the body, and androgen deficiency also leads to meibomian gland dysfunction and evaporative dry eye. On the other hand, estrogen causes a reduction in size, activity, and lipid production of sebaceous glands. Sex and its tropic hormones also influence the corneal anatomy and disease, and corneal thickening occurred on the second day of the menstrual cycle and around the time of ovulation and appeared to be related to estrogen levels. Fuchs' dystrophy is more commonly seen in postmenopausal women than men and may be linked to hormonal changes that occur with aging. In addition, overexpression of estrogen and progesterone receptors in the conjunctiva of vernal keratoconjunctivitis patients. Serum progesterone levels also may be associated with intraocular pressure especially in pregnant women, and for the women. For women with cataracts, hormone levels were typical of menopause, and there was a significant negative correlation between estradiol and follicular stimulating hormone levels. In addition, serum testosterone levels are associated with the development of diabetic retinopathy. Although the role of sex hormones on the eye is largely unknown, and the results should be interpreted with caution until replicated, the functions of sex hormones in ocular disease remains to be investigated, because they may be involved in structure and function of the ocular components, which are important in the pathogenesis of ocular disease.

Blue-light Induces the Selective Cell Death of Photoreceptors in Mouse Retina (청색광에 의한 마우스 망막손상에서 선택적 광수용세포의 사멸)

  • Kang, Seo-young;Hong, Ji Eun;Choi, Eun jung;Lyu, Jungmook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2016
  • Purpose: The study was conducted to determine that photoreceptors of mouse having pigment in RPE(retinal pigment epithelium) can be damaged by blue-light and apoptosis of specific cells among photoreceptors are induced by blue-light, and to assist the investigation of AMD(Age-related macular degeneration) mechanisms and development of AMD drugs. Methods: C57Black mice were injured by irradiating $2800{\pm}10lux$ of 463 nm LED for 6 hours after 24 hours dark adaptation and eyes were enucleated 1, 3, 7 days. Damage of retina induced by blue-light was determined by western blotting GFAP(Glial fibrillary acidic protein) expression. In the light-injured retina, cell death of photoreceptors was determined by TUNEL(Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. ERK(Extracellular signal-regulated kinases), JNK, and SRC(sarcoma) expression were assessed by western blotting to determine regulated pathway. Blue light-injured retina were immunostained with antibodies against Opsin and Rhodopsin as markers of photoreceptors to compared the damage cone cells with rod cells. Results: After 1, 3 and 7 days from exposure to blue-light, thickness of retina was more decreased than control, and more decreased at nuclear layer than at outer plexiform layer and GFAP expression was increased day 1 after blue-light injured. While phosphorylated ERK and SRC protein expressions at day 1 were increased after blue-light injured, phosphorylated c-JUN was decreased. Fluorescence intensity analysis showed that markers of cone and rod cells were decreased after blue-light injured and Opsin was more decreased than Rhodopsin. Conclusions: The study suggests possibilities that the blue-light promotes retinal damage and causes apoptotic cell death via ERK and SRC pathway in mouse retina, and blue-light retinal damage is more induced cone cells apoptosis than rod cells directly.