• 제목/요약/키워드: Agar diffusion assay

Search Result 73, Processing Time 0.04 seconds

Antibacterial Effect and Cytotoxicity of Desensitizer Containing Antimicrobial (항균물질을 함유한 지각과민처치제에 대한 항균효과 및 세포독성)

  • Lee, Hyun-Ok;Park, Ji-Young
    • Journal of dental hygiene science
    • /
    • v.15 no.2
    • /
    • pp.238-245
    • /
    • 2015
  • Dentinal hypersensitivity is a type of dental pain that occurs when various stimuli are applied to exposed dentin lesions. If the symptoms of dentinal hypersensitivity continue, the dentin is exposed and the hypersensitivity may become a periodontal disease or root caries due to bacterial infection. Therefore, the clinical goal of the present study is to reduce the pain of the patient suffering from dentinal hypersensitivity by developing antimicrobial hypersensitivity treatments and to improve oral hygiene. We prepared chlorhexidine, tetracycline, cetylpyridinium chloride, gallic acid loaded desensitizer by adding 0.1%, 0.5%, 1.0%, and 2.0% chlorhexidine, tetracycline, cetylpyridinium chloride, gallic acid to desensitizer (Micro Prime; Denville and Hurri Seal; Beutlich), and antibacterial effect, and cytotoxicity. The antibacterial test by using Staphylococcus aureus (SA. ATCC 6538, FDA 209) showed that the antibacterial effect of all experimental groups was significantly higher than that of control group (p<0.05). Cytotoxicity test by using agar diffusion assay indicated that Micro Prime showed mild toxicity, Hurri Seal showed severe toxicity and this cytotoxicity is supposed to be caused by one of desensitizer components showing weak antibacterial effect.

Phenol-Rich Compounds Sweet Gel: A Statistically More Effective Antibiotic than Cloxacillin Against Pseudomonas Aeruginosa

  • Dashtdar, Mehrab;Dashtdar, Mohammad Reza;Dashtdar, Babak;Khan, Gazala Afreen;Kardi, Karima
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • Objectives: The purpose of this study was to obtain a natural antibiotic from Phenol-rich compounds; for the dressing and the treatment of chronic wounds. Methods: The Phenol-rich compound sweet gel was prepared by blending four natural herbal extracts, Acacia catechu (L.F.), Momia (Shilajit), Castanea sativa, and Ephedra sinica stapf, with combination of a sweet gel medium, including honey, maple saps, Phoenix dactylifera L. (date), pomegranate extract and Azadirachta indica gum as a stabilizer. The combinations were screened by using a well-diffusion assay with cloxacillin as a control. Pseudomonas spp. was tested with our novel antimicrobial compound. The zones of inhibition in agar culture were measured for each individual component and for the compound, and the results were compared with those of the control group which had been treated with cloxacillin. Data were expressed as means ${\pm}$ standard deviations. Quantitative analyses were performed using the paired t-test. Results: The antibiotic effect of the Phenol-rich compound sweet gel was statistically shown to be more significant than that of cloxacillin against Pseudomonas aeruginosa (P < 0.05). Conclusion: Our novel approach to fighting the antibiotic resistance of Pseudomonas proved to be successful. The Phenol-rich compound sweet gel was found to be suitable for use as an alternative medicine and bioactive dressing material, for the treatment of patients with various types of wounds, including burns, venous leg ulcers, ulcers of various etiologies, leg ulcers on the feet of diabetic, unhealed graft sampling sites, abscesses, boils, surgical wounds, necrotic process, post-operative and neonatal wound infection, and should be considered as an alternative to the usual methods of cure.

Antibiotics (항균제)

  • 박승함
    • Korean Journal of Microbiology
    • /
    • v.9 no.2
    • /
    • pp.86-93
    • /
    • 1971
  • Escherichiae-like organisms were isolated from rectal specimens of 56 children who were either in preschool age or in elementary school. The isolated strains were subjected to tests to screen enteropathogens producing heat-labile enterotoxin and susceptibility test to various antibiotics by disc diffusion method on agar plates. Production of heat-labile enterotoxin by the strains was assyed in the sensitive and reproducible cultured adrenal tumor cell system. The assay was sterodogenesis of the cell in the presence of heat-labile enterotoxin. Among 56 strains, gave positive reaction in the test of toxin production. This meant that about 10% of the children population objected to the study harbored the toxigenic strain of enteropathogenes. Some of these toxigenic strains were resistant to the antibiotics employed in the test. This study suggested that considerable population in Korea may harbor entertoxigenic E. coli as a part of intestinal normal flora. The toxigenic strains which are resistant to antibiotics may bring issue of public health in the future.

  • PDF

Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens

  • Supraja, Nookala;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.127-140
    • /
    • 2017
  • Metal nanoparticles have been intensively studied within the past decade. Nano-sized materials have been an important subject in basic and applied sciences. Zinc oxide nanoparticles have received considerable attention due to their unique antibacterial, antifungal, and UV filtering properties, high catalytic and photochemical activity. In this study, microbiological aspects of scale formation in PVC pipelines bacteria and fungi were isolated. In the emerging issue of increased multi-resistant properties in water borne pathogens, zinc oxide (ZnO) nanoparticle are being used increasingly as antimicrobial agents. Thus, the minimum bactericidal concentration (MBC) and minimum fungal concentration of ZnO nanoparticles towards pathogens microbe were examined in this study. The results obtained suggested that ZnO nanoparticles exhibit a good anti fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 30 ppm). ZnO nanoparticles can be a potential antimicrobial agent due to its low cost of production and high effectiveness in antimicrobial properties, which may find wide applications in various industries to address safety issues. Stable ZnO nanoparticles were prepared and their shape and size distribution characterized by Dynamic light scattering (35.7 nm) and transmission electron microscopic TEM study for morphology identification (20 nm), UV-visible spectroscopy (230 nm), X-ray diffraction (FWHM of more intense peak corresponding to 101 planes located at $36.33^{\circ}$ using Scherrer's formula), FT-IR (Amines, Alcohols, Carbonyl and Nitrate ions), Zeta potential (-28.8). The antimicrobial activity of ZnO nanoparticles was investigated against Bacteria and Fungi present in drinking water PVC pipelines biofilm. In these tests, Muller Hinton agar plates were used and ZnO nanoparticles of various concentrations were supplemented in solid medium.

Feasibility of sodium long chain polyphosphate as a potential growth promoter in broilers

  • Moon, Seung-Gyu;Kothari, Damini;Kim, Woong-Lae;Lee, Woo-Do;Kim, Kyung-Il;Kim, Jong-Il;Kim, Eun-Jib;Kim, Soo-Ki
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1286-1300
    • /
    • 2021
  • The objective of this study was to evaluate in vitro antimicrobial and anti-biofilm activity of sodium long chain polyphosphate (SLCPP) and effect of dietary supplementation of SLCPP on growth performance, organ characteristics, blood metabolites, and intestinal microflora of broilers. Antimicrobial activities of SLCPP were observed against Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica ser. Pullorum, Shigella sonnei, Klebsiella pneumonia, Pseudomonas aeruginosa in agar well diffusion assay. In addition, SLCPP demonstrated good anti-biofilm activity against K. pneumonia and P. aeruginosa. Furthermore, to investigate the dietary effect of SLCPP, a total of 480 1-day-old male Ross 308 broiler chicks were randomly allotted to three dietary treatment groups (4 replicates per group, 40 birds in each replicate): an antibiotic-free corn-soybean meal basal diet (NC); basal diet + enramycin 0.01% (PC); and basal diet + 0.1% SLCPP (SPP). The experiment lasted for 35 days. Results showed that birds fed with SLCPP had higher body weight (BW) and average daily gain (ADG), and lower feed conversion ratio (FCR) during the grower phase (days 7 to 21) (p < 0.05). Except for blood urea nitrogen, all other blood biochemical parameters remained unaffected by the dietary supplementation of SLCPP. Compared to the control group, lengths of the duodenum and ileum in the SPP group were significantly shorter (p < 0.05). Moreover, counts of lactic acid bacteria (LAB), total aerobes, and Streptococcus spp. in jejunum as well as LAB in cecum were increased in the SPP group than in the PC group (p < 0.05). These results suggest that dietary supplementation of SLCPP might promote the growth of broilers in their early growth phase.

Control of Kimchi Fermentation by the Addition of Natural Antimicrobial Agents Originated from Plants (식물유래 천연항균물질 첨가에 의한 김치의 발효조절)

  • Seo, Hyun-Sun;Kim, Seonhwa;Kim, Jinsol;Han, Jaejoon;Ryu, Jee-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.583-589
    • /
    • 2013
  • We investigated the delay of kimchi fermentation by the addition of plant extracts. Fifteen plant extracts were screened for inhibitory activity aginst Lactobacillus plantarum by using an agar well diffusion assay, and determined the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were determined. The lowest MIC for grapefruit seed extract (GFSE; 0.0313 mg/mL) was determined, followed by Caesalpinia sappan L. extract (CSLE; 0.25 mg/mL), and oregano essential oil (OREO; 1.0 mg/mL). GFSE, CSLE, and OREO were individually added to kimchi, and incubated the samples at 10 for up to 20 days. Results showed that the addition of GFSE (0.3 and 0.5%), CSLE (0.1, 0.3, and 0.5%), or OREO (0.5 and 1.0%) led to a significant increase in the pH of kimchi, and also a significant reduction in the numbers of lactic acid bacteria. Taken together, the addition of natural antimicrobial agents can delay kimchi fermentation.

Antimicrobial Activity of the Sargassum fulvellum Ethanol Extract and the Effect of Temperature and pH on Their Activity (모자반 에탄올 추출물의 항균활성과 열 및 pH 안정성)

  • Yoon, So-Young;Lee, So-Young;Kim, Koth-Bong-Woo-Ri;Song, Eu-Jin;Lee, So-Jeong;Lee, Chung-Jo;Park, Na-Bi;Jung, Ji-Yeon;Kwak, Ji-Hee;Nam, Ki-Wan;Ahn, Dong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.155-159
    • /
    • 2010
  • The antimicrobial activity of Sargassum fulvellum (SF) was investigated using the agar diffusion assay and MIC test. In addition, the stability of this activity under extreme heat and pH conditions was examined. The SF ethanol extract was shown to display strong antimicrobial activities against B. subtilis, C. perfringens, L. plantarum, S. aureus, L. monocytogenes, S. cerevisae and C. tropicalis in the agar diffusion assay at the concentration of 4 mg/mL. The MIC value of the SF ethanol extract against the tested microbes ranged from 0.05 to 0.0063%. In the heat and pH stability test, the antimicrobial activity of the SF ethanol extract was not altered when the temperature was maintained at $121^{\circ}C$ for 15 min, and it was also not affected in the pH range of 2-10. These results suggest that the SF ethanol extract is highly stable against drastic changes in temperature and pH.

Antibacterial Activities of Et-OH Extract from Extruded White Ginseng on Tooth Decay Bacteria (압출성형 백삼 Et-OH 추출물의 충치유발균에 대한 항균활성)

  • Son, Hyun-Jung;Han, Min-Soo;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.951-957
    • /
    • 2009
  • In this study, antibacterial activity of extruded ginseng extract by 60 and 80% Et-OH were investigated by agar diffusion assay against two bacteria causing dental caries (Streptococcus mutans and Lactobacillus casei). Extrusion conditions were 20% moisture content $100^{\circ}C$ and $140^{\circ}C$ barrel temperature. The inhibition effect of 60% Et-OH ginseng extract was higher than 80% Et-OH ginseng extract. The minimum inhibitory concentration (MIC) of 80% Et-OH extruded ginseng extract at 140 and $100^{\circ}C$ barrel temperature against L.casei were 100 and 150 mg/mL respectively using broth assay method. The amount of glucosyltransferase (GTase) inhibitory content was the highest in extruded ginseng at $140^{\circ}C$ barrel temperature with 60% Et-OH. Moreover, n-hexane and n-butanol fraction ginseng extract had potential against tested bacteria. Our results demonstrated that antibacterial activities of extruded ginseng extract at $140^{\circ}C$ barrel temperature were more effective than Ex-$100^{\circ}C$, RG and WG.

Investigation of Active Antifungal Compounds of Essential Oil from Chamaecyparis obtusa Against Dermatophytes, Microsporum canis and Trichophyton Mentagrophytes (피부사상균 Microsporum canis 및 Trichophyton mentagrophytes에 대한 편백정유의 항진균활성물질 탐색)

  • Park, Mi-Jin;Lee, Soo-Min;Gwak, Ki-Seob;Jeung, Eui-Bae;Chang, Je-Won;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.72-78
    • /
    • 2005
  • The present study was conducted to evaluate the application of Chamaecyparis obtusa and to investigate potential utilization of essential oil from C. obtusa as plant-based medicine. The antifungal activity of essential oil from leaves and twigs of C. obtusa (Sieb. Et Zucc) was determined and the major components of active fractions against Microsporum canis (KCTC6591) and Trichophyton mentagrophytes (KCTC6077) were identified by GC/MS analysis. In treatment of essential oil from C. obtusa, the strain M. canis was more resistant than the other, T. mentagrophytes. In the agar diffusion assay, essential oil from C. obtusa inhibited hyphal growth of M. canis and T. mentagrophytes at the concentration of more than 5,000 ppm. The zones named B and C in the TLC assay of essential oil from C. obtusa showed antifungal activities. Among four sub-fractions of n-hexane extract from B and C zones, named as B-1, B-2, C-1 and C-2, the C-2 showed the highest antifungal activity. Instrumental GC/MS analysis for sub-fractions showed that a major component of C-1 was ${\alpha}$-terpineol as terpene alcohol, while C-2 contained sesquiterpenes such as elemol, cedrol and eudesmol.

Investigation on Antibacterial and Antioxidant Activities, Phenolic and Flavonoid Contents of Some Thai Edible Plants as an Alternative for Antibiotics

  • Lee, J.H.;Cho, S.;Paik, H.D.;Choi, C.W.;Nam, K.T.;Hwang, S.G.;Kim, Soo-Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1461-1468
    • /
    • 2014
  • This study was aimed to examine the antibacterial and antioxidative properties of seven edible plants from Thailand to develop alternative antibiotics as feed additives. The plants include Citrus aurantifolia Swingle (Lime) fruits and its leaves, Sesbania grandiflora L. (Agati sesbania) leaves, Piper sarmentosum Roxb (Wild betal) leaves, Curcuma domestica Valeton (Turmeric) roots, Morinda citrifolia L. (Beach mulberry) leaves, Cassia siamea britt (Siamea cassia) leaves, and Cocos nucifera L. (Coconut) peels. The plants were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. Antibacterial activities with minimum inhibitory concentration (MIC) were determined by agar diffusion assay against Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, and Clostridium perfringens that were considered pathogenic strains in livestock infection. Methanol extracts of C. aurantifolia Swingle fruits and leaves showed the broadest spectrum of antibacterial activities except for C. perfringens. Butanol extract of S. grandiflora L. leaves showed the strongest activity against Burkholderia sp. with MIC, $135{\mu}g/mL$. P. sarmentosum Roxb leaves showed antibacterial activities against E. coli, Burkholderia sp. and H. parasuis. Ethyl acetate and water extracts from C. domesitca Valeton roots showed MIC of $306{\mu}g/mL$ and $183{\mu}g/mL$, respectively against only C. perfringens. Antioxidative activity was determined by 2-diphenyl-2-picryl hydrazyl photometric assay. The methanol extracts of C. aurantifolia Swingle fruits and P. sarmentosum Roxb leaves showed the highest antioxidant activity among all the extracts with 3.46 mg/mL and 2.70 mg/mL effective concentration 50% ($EC_{50}$) values, respectively. Total contents of phenolics and flavonoids were measured from the plant extracts. Methanol extracts of S. grandiflora L. and chloroform extracts of C. domestica Valeton were found to have the highest amount of total phenolics, 41.7 and $47.8{\mu}g/mL$, respectively. Flavonoid content of methanol extracts in S. grandiflora L. T was $22.5{\mu}g/mL$ and the highest among plant extracts tested. These results indicated that C. aurantifolia Swingle, S. grandiflora L., P. sarmentosum Roxb, and C. domestica Valeton have antibacterial and antioxidant activities and can be used as alternative antibiotics or potential feed additives for the control of animal pathogenic bacteria.