• Title/Summary/Keyword: AgCl

Search Result 531, Processing Time 0.03 seconds

AgI/AgCl/H2WO4 Double Heterojunctions Composites: Preparation and Visible-Light Photocatalytic Performance

  • Liu, Chunping;Lin, Haili;Gao, Shanmin;Yin, Ping;Guo, Lei;Huang, Baibiao;Dai, Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.441-447
    • /
    • 2014
  • $AgI/AgCl/H_2WO_4$ double heterojunctions photocatalyst was prepared via deposition-precipitation followed by ion exchange method. The structure, crystallinity, morphology, chemical content and other physical-chemical properties of the samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL). The photocatalytic activity of the $AgI/AgCl/H_2WO_4$ was evaluated by degrading methyl orange (MO) under visible light irradiation (${\lambda}$ > 400 nm). The double heterojunctions photocatalyst displayed more efficient photocatalytic activity than pure AgI, AgCl, $H_2WO_4$ and AgCl/$H_2WO_4$. Based on the reactive species and energy band structure, the enhanced photocatalytic activity mechanism of $AgI/AgCl/H_2WO_4$ was discussed in detail. The improved photocatalytic performance of $AgI/AgCl/H_2WO_4$ double heterojunctions could be ascribed to the enhanced interfacial charge transfer and the inhibited recombination of electron-hole pairs, which was in close relation with the $AgI/AgCl/H_2WO_4$ heterojunctions formed between AgI, AgCl and $H_2WO_4$.

Controllable Biogenic Synthesis of Intracellular Silver/Silver Chloride Nanoparticles by Meyerozyma guilliermondii KX008616

  • Alamri, Saad A.M.;Hashem, Mohamed;Nafady, Nivien A.;Sayed, Mahmoud A.;Alshehri, Ali M.;El-Shaboury, Gamal A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • Intracellular synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Meyerozyma guilliermondii KX008616 is reported under aerobic and anaerobic conditions for the first time. The biogenic synthesis of Ag-NP types has been proposed as an easy and cost-effective alternative for various biomedical applications. The interaction of nanoparticles with ethanol production was mentioned. The purified biogenic Ag/AgCl-nanoparticles were characterized by different spectroscopic and microscopic approaches. The purified nanoparticles exhibited a surface plasmon resonance band at 419 and 415 nm, confirming the formation of Ag/AgCl-NPs under aerobic and anaerobic conditions, respectively. The planes of the cubic crystalline phase of the Ag/AgCl-NPs were confirmed by X-ray diffraction. Fourier-transform infrared spectra showed the interactions between the yeast cell constituents and silver ions to form the biogenic Ag/AgCl-NPs. The intracellular Ag/AgCl-NPs synthesized under aerobic condition were homogenous and spherical in shape, with an approximate particle size of 2.5-30nm as denoted by the transmission electron microscopy (TEM). The reaction mixture was optimized by varying reaction parameters, including temperature and pH. Analysis of ultrathin sections of yeast cells by TEM indicated that the biogenic nanoparticles were formed as clusters, known as nanoaggregates, in the cytoplasm or in the inner and outer regions of the cell wall. The study recommends using the biomass of yeast that is used in industrial or fermentation purposes to produce Ag/AgCl-NPs as associated by-products to maximize benefit and to reduce the production cost.

Reduction of AgCl to Ag by $Na_2CO_3$ ($Na_2CO_3$에 의한 AgCl의 Ag 환원)

  • 박경호;노범식;손정수
    • Resources Recycling
    • /
    • v.5 no.1
    • /
    • pp.29-33
    • /
    • 1996
  • The cominnn plocesses lor rccoremg silver irom silvcr conlaincd waster are the lcachmg silver hy HNO;. the srlcctive precipilillion of sliver ion lo AgCl and thc rcduchon of Ag wrfh ;I proper reductant. In this sludy, thc reduction of AgCI lo Ag was invesllngated by using Na, CO, as a rcd\icta~lt. The variations wcic reaction time. ttmpcrarure thc amount of NalCO, . and the resulls %, ere analyzcd by using sialist~c:d tecl~niques such as the ]polynomial rcgressiun analysis and the response surh~ce method. More than Yh% Ag analyzed was rcduced 1rtm AgCI at 62UT. I hour ullder condillon of 2 stnlchio~nctric ratio of Na iCO, !AgCI.

  • PDF

Effect of Cl Content on Interface Characteristics of Isotropic Conductive Adhesives/Sn Plating Interface (도전성접착제/Sn도금의 계면특성에 미치는 Cl의 영향)

  • Kim, Keun-Soo;Lee, Ki-Ju;Suganuma, Katsuaki;Huh, Seok-Hwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.33-37
    • /
    • 2011
  • In this study, the degradation mechanism of mounted chip resistors with Ag-epoxy isotropic conductive adhesives (ICAs) under the humidity exposure ($85^{\circ}C$/85%RH) was examined by electrical resistance change and microstructural study. The effect of the chloride content in Ag-epoxy ICA on joint stability was also examined. The increasing range of the electrical resistance in the typical ICA joint was greater than that in the low Cl content ICA joint. In the case of the typical ICA joint, Sn oxides such as SnO, $SnO_2$, and Sn-Cl-O were formed inhomogeneously on the surface of the Sn plating during the $85^{\circ}C$/85%RH test. In contrast, no Sn-Cl-O was found in the low Cl content ICA joint during the $85^{\circ}C$/85%RH. It is suggested that Cl in Ag-epoxy ICA accelerate the electrical degradation of Sn plated chip components joined with Ag-epoxy ICA.

Electrochemical Desalination of a 50% w/w Sodium Hydroxide Solution, a Pharmaceutical Sterilization Agent

  • Jaehong Lee;Ji-hyun Yang;Eugene Huh;Sewon Park;Bonmoo Koo;Ik-Sung Ahn
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • Sodium hydroxide solutions are often employed as sterilization agents in the pharmaceutical industry. Here, the chloride content is considered as a critical impurity. In this study, an electrochemical method was developed to remove chloride ions (Cl-) through the oxidative deposition of AgCl on a Ag anode. The Cl- content in the commercially available 50% w/w NaOH solution employed was approximately 100 mg Cl-/kg NaOH. As the OH- content is approximately 18,000 times higher than the Cl- content, the formation of AgCl may be expected to be thermodynamically less favorable than the formation of Ag2O. However, activation energies for AgCl and Ag2O formation have been reported to be approximately 3.8 and 31.2 kJ/mol, respectively, and indicate that AgCl formation is favored. AgCl can be selectively produced by controlling the anode potential. Here, the Cl- concentration was reduced to less than 50 mg Cl-/kg NaOH when an anode potential of 0.18 or 0.19 V vs. Hg/HgO (reference electrode) was applied for one hour at 50℃. XRD analysis and visual monitoring of the Ag anode confirmed the oxidative deposition of AgCl on the anode surface as well as the electrochemical desalination of the concentrated NaOH solution.

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light

  • Zhu, Hai-Tao;Ren, Qi-Fang;Jin, Zhen;Ding, Yi;Liu, Xin-Yu;Ni, Xi-Hui;Han, Meng-Li;Ma, Shi-Yu;Ye, Qing;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.383-392
    • /
    • 2020
  • In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.

Characterization of Water-Filled Ag/AgCl Reference Electrode

  • Bahn Chi Bum;Oh Sihyoung;Hwang Il Soon;Chung Hahn Sup;Jegarl Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.87-93
    • /
    • 2001
  • Pressure-balanced external Ag/AgCl electrode has been extensively used for both Pressurized Water Reactor (PWR) and Boiling Water Reactor (PWR) environments. The use of KCI-based buffer solution often becomes the source of electrode potential drift due to slow leakage through its porous plug, typically made of zirconia. It is reported that results of our effort to improve the stability of electrode potential by using high purity water as the filling solution in which $Cl^-$ ion activity can be established and maintained at the solubility of AgCl even with the sustained leakage for a long period. Stability tests have been made in boron and lithium mixture solution at $288^{\circ}C$. The electrode potential remained stable within 10 mV over one week period. And after a thermal cycle between 288 to $240^{\circ}C$ the potential shift of Ag/AgCl electrodes did not exceed 15 mV By using the limiting equivalent ionic conductances and Agar's hydrodynamic theory, the thermal liquid junction potential (TLJP) of the electrode has been predicted. The calculated values for the water-fiued Ag/AgCl electrode potential, in which the chlorine concentration in the filling solution was derived from the measured data at ambient temperature, had a good agreement with the experimental values.

Poly(ethylenimine)-Stabilized Hollow Gold-Silver Bimetallic Nanoparticles: Fabrication and Catalytic Application

  • Shin, Kuan-Soo;Kim, Ji-Hoon;Kim, In-Hyun;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.906-910
    • /
    • 2012
  • Hollow gold-silver bimetallic nanoparticles (AuAg-HNPs) have been synthesized and their optical and structural properties were characterized. Initially Ag nanoparticles (Ag-NPs) were prepared using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. AuAg-HNPs could then be synthesized via galvanic replacement reaction in a PEI aqueous solution by reacting sacrificial Ag template with a precursor compound of Au, i.e., $HAuCl_4$. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of $Ag^+$ in the presence of Cl from $HAuCl_4$ salt was avoided. On this basis, the relatively high concentrations of $HAuCl_4$ and PEI-stabilized Ag nanoparticles could be used for the fabrication of AuAg-HNPs. Because of their increased surface areas and reduced densities, the AuAg-HNPs were expected and confirmed to outperform their solid counterparts in applications such as catalysis for the reduction of 4-nitrophenol in the presence of $NaBH_4$.

Electrical and Optical Properties of Top Emission OLEDs with CsCl Passivation Layer (CsCl 보호막을 이용한 전면발광 OLED의 전기 및 광학적 특성)

  • Kim, So-Youn;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.173-177
    • /
    • 2008
  • We have developed the transparent passivation layer for top emission organic light emitting diodes using CsCl thin film by the thermal evaporation method. The CsCl film was deposited on the Ca/Ag semitransparent cathode. The optical transmittance of Ca/ Ag/CsCl triple layer is higher than that of Ca/Ag double layer in the visible range. The device with a structure of glass/Ni/2-TNATA/a-NPD/Alq3:C545T/BCP/Alq3/Ca/Ag/CsCl results in higher efficiency than the device without CsCl passivation layer. The device without CsCl thin film shows a current efficiency of 7 cd/A, whereas the device passivated with CsCl layer shows an efficiency of 10 cd/A. This increase of efficiency isresulted from the increased optical extraction by the CsCl passivation layer.

Development and Assessment of Conductive Fabric Sensor for Evaluating Knee Movement using Bio-impedance Measurement Method (슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유센서 개발 및 평가)

  • Lee, Byung-Woo;Lee, Chung-Keun;Cho, Ha-Kyung;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • This paper describes the development and assessment of conductive fabric sensor for evaluating knee movement using bio-impedance measurement method. The proposed strip-typed conductive fabric sensor is compared with a dot-typed Ag/AgCl electrode for evaluating validity under knee movement condition. Subjects are composed of ten males($26.6{\pm}2.591$) who have not had problems on their knee. The strip-typed conductive fabric sensor is analyzed by correlation and reliability between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor. The difference of bio-impedance between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor averages $7.067{\pm}13.987\;{\Omega}$ As the p-value is under 0.0001 in 99% of t-distribution, the strip-typed conductive fabric sensor is correlated with a dot-typed Ag/AgCl electrode by SPSS software. The strip-typed conductive fabric sensor has reliability when it is compared with a dot-typed Ag/AgCl electrode because most of bio-impedance values are in ${\pm}1.96$ standard deviation by Bland-Altman Analysis. As a result, the strip-typed conductive fabric sensor can be used for assessing knee movement through bio-impedance measurement method as a dot-typed Ag/AgCl electrode. Futhermore, the strip-typed conductive fabric sensor is available for wearable circumstances, applications and industries in the near future.