• Title/Summary/Keyword: Ag thin films

Search Result 336, Processing Time 0.029 seconds

Effect of Annealing Temperature on Thermoelectric Properties of Ag2Se Nanoparticle Thin Films (저온 열처리 공정에 따른 Ag2Se 나노입자 박막의 열전특성)

  • Yang, Seunggen;Cho, Kyoungah;Yun, Junggwon;Choi, Jinyong;Kim, Sangsig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.611-616
    • /
    • 2016
  • In this study, we synthesized $Ag_2Se$ nanoparticles (NPs) in an aqueous solution and investigated the thermoelectric characteristics of $Ag_2Se$ NPs thin films on plastic substrates. Regardless of thermal annealing treatment, all the $Ag_2Se$ NPs thin films show the negative Seebeck coefficients, indicating the n-type characteristics. As the annealing temperature increases, the electric conductivity increases while the Seebeck coefficient decreases. The electric conductivity of the thin film annealed at $180^{\circ}C$ is larger by $10^6$ times, compared with the as-prepared thin film, And the maximum power density for the thin film annealed at $180^{\circ}C$ is calculated to be $44{\mu}W/cm^2$.

Optical Properties of $Sb_2S_3$ and Ag Doped $Sb_2S_3$ Thin Films ($Sb_2S_3$ 박막과 Ag 도핑한 $Sb_2S_3$ 박막의 광학적인 특성)

  • Kim, Jong-Ki;Park, Jung-Il;Lee, Hyun-Yong;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1959-1961
    • /
    • 1999
  • We prepared the $Ag[100\AA])/Sb_2S_3[3000\AA]$ films using the thermal evaporator. The films were exposed by the blue-pass filtered mercury lamp and the polarized He-Ne laser. We have investigated the dependence of the induced optical energy with Ag-doping and have observed the transmittance variation near the optical absorption edge with the light source. It was shown that the energy gap of this thin film was largely changed by exposing He-Ne laser, the light source of the near energy gap of this thin film. It is because of the structural change from Ag-doping. It is investigated that the dissolution, the diffusion, and the field effect of the Ag thin film generate the Ag spatial distribution.

  • PDF

Measurement of the photoinduced Dichoism in Ag/AsGeSeS multilayer thin films (Ag/AsGeSeS 다층박막에서의 이색성 측정)

  • Shin, Kyung;Yeo, Cheol-Ho;Lee, Jung-Tae;Park, Jeong-Il;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.81-84
    • /
    • 2002
  • The chalcogenide glasses of thin films have the superior property of photoinduced anisotrophy(PA). In this study, we observed the linear dichroism(D) using the irradiation with polarized He-Ne laser light, in the $Ag/As_{10}Ge_{10}Se_{15}S_{35}$ multi-layer. Mutilayer structures formed by alternating metal(Ag) and chalcogenide($As_{10}Ge_{10}Se_{15}S_{35}$). The Ag polarized photodoping result in reducing time of saturation anisotrophy and increasing sensitivity of linearly anisotrophy intensity, up to maximum 220%. In the thin films of chalcogenide, the Ag polarized photodoping will be show a capability of new method that suggested more improvement of photoinduced anisotrophy property.

  • PDF

Green Synthesis of Ag Thin Films on Glass Substrates and Their Application in Surface-Enhanced Raman Scattering

  • Cho, Young Kwan;Kim, In Hyun;Shin, Kuan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2942-2946
    • /
    • 2013
  • Nanostructured Ag thin films could be facilely prepared by soaking glass substrates in ethanolic solutions containing $Ag_2O$ powders at an elevated temperature. The formation of zero-valent Ag was corroborated using X-ray diffraction and X-ray photoelectron spectroscopy. The deposition of Ag onto a glass substrate was readily controlled simply by changing the reaction time. Due to the aggregated structures of Ag, the surface-enhanced Raman scattering spectra of benzenethiol could be clearly identified using the Ag-coated glass. The enhancement factor at 514.5 nm excitation estimated using benzenethiol reached $1.0{\times}10^5$ while the detection limit of rhodamine 6G was found to be as low as $1.0{\times}10^{-13}$ M. Since this one-pot fabrication method is eco-friendly and is suitable for the mass production of diverse Ag films, it is expected to play a significant role in the development of surface plasmon-based analytical devices.

A Study on Holographic Grating Formation in Se-base Amorphous Chalcogenide Thin Films (Se-base로 한 비정질 칼코게나이드 박막의 훌로그래픽 격자 형성)

  • Ju, Long-Yun;Choi, Hyuk;Nam, Ki-Hyeon;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.181-182
    • /
    • 2007
  • In this paper, we investigated the diffraction grating efficiency on $Ge_{75}Se_{25}$ and Ag-doped amorphous chalcogenide $Ag/Ge_{75}Se_{25}$ thin film for used to volume hologram. The film thickness was 2 um and diffraction efficiency was obtained from He-Ne (632.8nm) and DPSS(532nm) (P:P) polarized laser beam on $Ge_{75}Se_{25}$ and Ag/$Ge_{75}Se_{25}$ thin films. As a result. for the films, the diffraction efficiency on Ag/$Ge_{75}Se_{25}$ double layer, was better than single $Ge_{75}Se_{25}$ thin films. The recording speed of DPSS laser is higher than that of He-Ne laser.

  • PDF

Underlayer for Coercivity Enhancement of Ti/CoCrPt Thin Films (보자력 향상을 위한 Ti/CoCrPt박막의 하지층)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.3
    • /
    • pp.94-98
    • /
    • 2002
  • Sputtering conditions and various underlayer such as Al, Cu, Ni, Cr, Ag, Mg, Fe, Co, Pd, Au, Pt, Mo and Hf were investigated for coercivity enhancement of 20 nm Ti/CoCrPt thin films in order to increase the coercivity of the films thinner than 20 nm. Among them, Ag and Mg were effective to increase the coercivity. Particularly 2 nm Ag was very effective to increase the coercivity and nucleation field as well as to reduce ${\alpha}$ value in CoCrPt thin film such that the coercivity of 2 nm Ag/18 nm Ti/10 nm CoCrPt film was 2200 Oe. However, it seemed that other coercivity enhancement mechanism operated in CoCrPt films because Ti (002) preferred texture was not developed with Ag underlayer contrary to a general expectation. And the coercivity and nucleation field were decreased when glass substrate with rougher surface was used.

A Study on the Electromigration Characteristics in Ag, Cu, Au, Al Thin Films (Ag, Cu, Au, Al 박막에서 엘렉트로마이그레이션 특성에 관한 연구)

  • Kim, Jin-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • Recent ULSI and multilevel structure trends in microelectronic devices minimize the line width down to less than $0.25{\mu}m$, which results in high current densities in thin film interconnections. Under high current densities, an EM(electromigration) induced failure becomes one of the critical problems in a microelectronic device. This study is to improve thin film interconnection materials by investigating the EM characteristics in Ag, Cu, Au, and Al thin films, etc. EM resistance characteristics of Ag, Cu, Au, and Al thin films with high electrical conductivities were investigated by measuring the activation energies from the TTF (Time-to-Failure) analysis. Optical microscope and XPS (X-ray photoelectron spectroscopy) analysis were used for the failure analysis in thin films. Cu thin films showed relatively high activation energy for the electromigration. Thus Cu thin films may be potentially good candidate for the next choice of advanced thin film interconnection materials where high current density and good EM resitance are required. Passivated Al thin films showed the increased MTF(Mean-time-to-Failure) values, that is, the increased EM resistance characteristics due to the dielectric passivation effects at the interface between the dielectric overlayer and the thin film interconnection materials.

Effect of Deposition and Annealing Temperature on Structural, Electrical and Optical Properties of Ag Doped ZnO Thin Films

  • Jeong, Eun-Kyung;Kim, In-Soo;Kim, Dae-Hyun;Choi, Se-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.84-91
    • /
    • 2008
  • The effects of the deposition and annealing temperature on the structural, electrical and optical properties of Ag doped ZnO (ZnO : Ag) thin films were investigated. All of the films were deposited with a 2wt% $Ag_2O-doped$ ZnO target using an e-beam evaporator. The substrate temperature varied from room temperature (RT) to $250^{\circ}C$. An undoped ZnO thin film was also fabricated at $150^{\circ}C$ as a reference. The as-grown films were annealed in temperatures ranging from 350 to $650^{\circ}C$ for 5 h in air. The Ag content in the film decreased as the deposition and the post-annealing temperature increased due to the evaporation of the Ag in the film. During the annealing process, grain growth occurred, as confirmed from XRD and SEM results. The as-grown film deposited at RT showed n-type conduction; however, the films deposited at higher temperatures showed p-type conduction. The films fabricated at $150^{\circ}C$ revealed the highest hole concentration of $3.98{\times}1019\;cm^{-3}$ and a resistivity of $0.347\;{\Omega}{\cdot}cm$. The RT PL spectra of the as-grown ZnO : Ag films exhibited very weak emission intensity compared to undoped ZnO; moreover, the emission intensities became stronger as the annealing temperature increased with two main emission bands of near band-edge UV and defect-related green luminescence exhibited. The film deposited at $150^{\circ}C$ and annealed at $350^{\circ}C$ exhibited the lowest value of $I_{vis}/I_{uv}$ of 0.05.

Holographic Data Grating Formation of AsGeSeS Single layer, Ag/AsGeSeS double layer And AsGeSeS/Ag/AsGeSeS Muti-layer Thin Films with the DPSS Laser (DPSS Laser에 의한 AsGeSeS,Ag/AsGeSeS 와 AsGeSeS/Ag/AsGeSeS 박막의 홀로그래픽 데이터 격자형성)

  • Koo, Yong-Woon;Koo, Sang-Mo;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.55-56
    • /
    • 2006
  • We investigated the diffraction grating efficiency by the DPSS laser beam wavelength to improve the diffraction efficiency on AsGeSeS & Ag/ AsGeSeS thin film. Diffraction efficiency was obtained from DPSS(532nm)(P:P)polarized laser beam on AsGeSeS, Ag/ AsGeSeS and AsGeSeS/Ag/AsGeSeS thin films. As a result, for the laser beam intensity, 0.24 mW, single AsGeSeS thin film shows the highest value of 0.161% diffraction efficiency at 300 s and for 2.4 mW, it was recorded with the fastest speed of 50 s, which the diffraction grating forming speed is faster than that of 0.24 mW beam. Ag/ AsGeSeS and AsGeSeS/ Ag/ AsGeSeS multi-layered thin film also show the faster grating forming speed at 2.4 mW and higher value of diffraction efficiency at 0.24 mW.

  • PDF

The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films (구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향)

  • Hwang, Seulgi;Kim, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1064-1069
    • /
    • 2010
  • Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.