• Title/Summary/Keyword: Ag sintering

Search Result 162, Processing Time 0.029 seconds

Preparation of PMN-PT-BT/Ag/MgO Nanocomposite and Dielectric Properties (PMN-PT-BT/Ag/MgO 나노복합체의 제조 및 유전 특성)

  • Jeong, Soon-Yong;Lim, Kyoung-Ran;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1074-1082
    • /
    • 2002
  • Nanocomposite PMN-PT-BT/Ag/MgO was prepared by sintering at $950{\circ}C$ with addition of $AgNO_3$ and MgO sol to the PMN-PT-BT powder sinterable at $1200{\circ}C$. The low-temperature-sinterable PMN-PT-BT/Ag powder prepared by the modified mixed oxide method was calcined at $600{\circ}C$ for 1h and surface modified with the MgO sol of 0-10 wt% and then subjected to consolidation at $850-950{\circ}C$ for 4h under a flowing oxygen. The nanocomposite PMN-PT-BT/Ag/MgO(0.5wt%) sintered at $950{\circ}C$ showed the microstructure with grains of $1-3{\mu}m$, the second phase of MgO of $0.1-0.3{\mu}m$ by SEM and Ag of << $1{\mu}m$ qualitatively by SIMS. It showed the sintered relative density of 99%, the room temperature dielectric constant of 17200, the dielectric loss of 2.1% and the specific resistivity of $5.46{\times}10^{12}{\Omega}{\cdot}cm$. But the PMN-PT-BT/Ag/MgO(0 wt%) nanocomposite sintered at $950{\circ}C$ showed a little better properties : the sintered relative density of 99.5%, the room temperature dielectric constant of 19500, the dielectric loss of 2.1% and the specific resistivity of $7.30{\times}10^{12}{\Omega}{\cdot}cm$.

Silver Coating on the Porous Pellets from Porphyry Rock and Application to an Antibacterial Media (반암(맥반석)으로 제조한 다공성 펠렛의 Ag 담지 및 항균 메디아로서의 적용)

  • Han, Yo-Sep;Kim, Hyun-Jung;Shin, Young-Seop;Park, Jai-Koo;Ko, Jae-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • The porous pellets were prepared from porphyry by slurry foaming method. The effect of sintering temperatures on pore structure of porous porphyry pellets with different extension ratio ($E_R$) was investigated by specific surface area, water absorption and porosity, which changed with sintering temperatures. When the sintering temperatures increased from $975^{\circ}C$ to $1075^{\circ}C$, specific surface area and water absorption of the all samples decreased. In case of the sample with an equal sintering temperature, $E_R=3.0$ pellets had little influence on pore structure compared to the $E_R=2.0$ pellets. As a results, it was shown by SEM that facilitated formation of micro pores at $E_R=2.0$ pellets shrunk increasingly after sintering process. At $E_R=3.0$ and sintering temperature at $1025^{\circ}C$, optimum conditions of the porous porphyry porous pellets was found. Also, Escherichia coli removal efficiency of the silver-containing porphoyry porous pellets was measured for the feasibility as a antibacterial media. The antibacterial activity of prepared silver-containing sample was maintained above 90% for 40 days.

Properties of Porous Silver with Polysiloxane Addition (다공성 은의 폴리실록센 첨가에 따른 물성 변화)

  • Kim, Eun-seok;Kim, Ik-gyu;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.603-611
    • /
    • 2020
  • A porous material which can contain liquid perfume was manufactured by adding 1~4 wt% of polysiloxane into a composite containing 20 ㎛ Ag powder and 30 wt% of 53 ㎛ salt, sintering for 60 min at 750℃, and melting salt selectively. The changes in pore, hardness, and microstructure were confirmed according to the polysiloxane content both before and after sintering. The manufactured silver liquid container was formed with open pores both before and after sintering, and the container shrunk by 2~7 % in both perpendicular and parallel directions after sintering. Vickers hardness was increased after sintering and was doubled when 2 wt% of polysiloxane was added. In case of the microstructure, the surface condition of the silver liquid container became darker according to the polysiloxane content, and the pore size was decreased from 50 ㎛ to under 10 ㎛. The composition distribution result revealed an even distribution when 2 wt% of polysiloxane was added but uneven distribution when over 3 wt% of polysiloxane was added due to decreased hardness by cluster. Therefore, the addition of an appropriate amount of 2 wt% polysiloxane reinforced the porous silver with open pores to offer application for jewelry usage.

Characterizations of fine Bi-2223 precursor powder by spray pyrolysis process (분무 열분해법으로 제조된 미세 Bi-2223 전구분말의 특성)

  • Kim S. H.;Yoo J. M.;Ko J. W.;Kim Y. K.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.124-128
    • /
    • 2005
  • Homogeneous and fine powders for Bi-2223 tape were prepared by ultrasonic spray pyrolysis (SP) method from an aqueous solution of metal nitrates. Bi-2223 precursor powders were synthesized with various solutes concentration and pyrolysis temperature. The synthesized precursor powders had a narrow particle size distribution and an average particle size was $\~{\cal}um$. The reactivity of precursor powder by SP method is very high, attributed to the fine and narrow particle size distribution. Bi-2223/Ag tape was prepared using PIT method and followed by various sintering conditions. The precursor powder by SP method promoted a very quick formation of the Bi-2223 phase for short sintering time while the secondary phase such as large AEC phase and $Ca_2PbO_4$ were minimized for SP tapes.

  • PDF

High $T_c$ Superconducting Thick Film for Applications

  • Soh, Deawha;Park, Seongbeom;Wang, Jue;Li, Fenghua;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.12-15
    • /
    • 2003
  • The YBaCuO thick film was deposited by the electrophoresis in the solution with different dimension particles. The morphology of the films deposited from different particles size was compared. The powder made by sol-gel method has the submicron particles, which deposit the most smooth film, and without microcracks after sintering. After sintering of the deposited film, the zone-melting process was carried out in low oxygen partial pressure (100 Pa) and Ag was used as substrate. And the zone-melted YBaCuO was studied by XRD.

  • PDF

TLP and Wire Bonding for Power Module (파워모듈의 TLP 접합 및 와이어 본딩)

  • Kang, Hyejun;Jung, Jaepil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.7-13
    • /
    • 2019
  • Power module is getting attention from electronic industries such as solar cell, battery and electric vehicles. Transient liquid phase (TLP) boding, sintering with Ag and Cu powders and wire bonding are applied to power module packaging. Sintering is a popular process but it has some disadvantages such as high cost, complex procedures and long bonding time. Meanwhile, TLP bonding has lower bonding temperature, cost effectiveness and less porosity. However, it also needs to improve ductility of the intermetallic compounds (IMCs) at the joint. Wire boding is also an important interconnection process between semiconductor chip and metal lead for direct bonded copper (DBC). In this study, TLP bonding using Sn-based solders and wire bonding process for power electronics packaging are described.

Sintering Property of Ti-Te LTCC Materials with SnO Additions (SnO 첨가에 따른 Ti-Te LTCC 재료의 소결 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.169-170
    • /
    • 2008
  • In this study, low temperature sintering property of the $0.6TiTe_3O_8-0.4MgTiO_3$ ceramics with sintering adds were investigated for LTCC application which enable to cofiring with Ag electrode. $TiTe_3O_8$ mixed with $MgTiO_3$ to improve the temperature property. In the X-ray diffraction patterns, the columbite structure of $TiTe_3O_8$ phase and ilmenite structure of $MgTiO_3$ phase were coexisted in all specimens. In the case of SnO addition, the bulk density and dielectric constant were increased but quality factor was decreased with amount of SnO additions. The TCRF of the $0.6TiTe_3O_8-0.4MgTiO_3$+xwt%SnO ceramics were shifted to negative direction. The dielectric constant, quality factor and TCRF of the $0.6TiTe_3O_8-0.4MgTiO_3$ ceramics with 2.5wt% addition of SnO sintered at $830^{\circ}C$ for 1hr were 29.86, 35,800 GHz, -0.58 ppm/$^{\circ}C$, respectively.

  • PDF

Development of Micro-Ceramic Heater for Medical Application (의료용 소형 세라믹스 히터 소자의 개발)

  • Lee, Seung-Min;Lee, Kwang-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.219-229
    • /
    • 2022
  • In this study, we propose a miniaturized micro-ceramic heater device. After screen-printing a silver paste between pre-sintered two aluminum oxide plates to integrate a heating circuit, the device was fabricated through a low-temperature sintering process. In order to configure the optimal heating circuit integration condition, the output current evaluation and heating test were performed according to the number of screen prints of the silver paste at various voltages. A silver paste-based heating circuit printed with a line width of 200 ㎛ and a thickness of 60 ㎛ was successfully integrated on a pre-sintered alumina substrate through a low-temperature sintering process. In the case of the 5 times printed device, the thermal response showed a response rate of 18.19 ℃/sec. To demonstrate feasibility of the proposed device in the medical field, such as bio-tissue suturing and hemostasis, a voltage was applied to pig tissue in the device to test tissue change due to heat generated from the device. These results show the possibility that the proposed small ceramic heater could be used in the medical field based on its excellent temperature response.

Ag Impregnated HAp Coatings on Alumina Substrate by IBAD and Its Biological Test (IBAD를 이용하여 알루미나 위에 HAp를 Coating하는 연구와 이의 항균력 시험)

  • Park, Eui-Seo;Kim, Taik-Nam;Yim, Hyuk-Jun;Kim, Yun-Jong;Hwang, Deuk-Soo;Kim, Jung-Woo;Kim, Sun-Ok
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.181-187
    • /
    • 1998
  • Hydroxyapatite was used as implant materials, because it has a good biocompatibility and is similar to human bone. However it is not expected to have a high strength as implant materials because of a low fracture strength after sintering of HAp. Alumina ($\alpha$-alumina) shows a stable chemical properties and high strength in physiological environments. Thus it was tried to use a HAp coatings on Alumina substrate as implant materials. In this study, HAp was coated on Alumina substrate by lon Beam Assisted Deposition(IBAD). Then Ag was impregnated on HAp coating layer, which showed antimicrobial effects. To carry out the ion exchange of $Ag^+$ with $Ca^{2+}$ in HAp on the surface, HAp coated alumina substrate was immersed in 20ppm, 100ppm $AgNO_3$ solution at room temperature for 48 hours. Antimicrobial test was studied by using bacteria, which normally caused periprosthetic infections. The follwing bacteria was used in antimicrobial test. Escherichia coli, Pseudomonas aeruginosa (gram negative) and staphylococcus epidermidis (gram positive). Ag impregnated HAp shows very good antimicrobial effects against these bacteria. The surface structure of sample, which was treated in $AgNO_3$ solution was studied by SEM, XRD. Ag release curve was studied in Simulated Body Fluid (SBF) solution.

  • PDF

Preparation of PMN-PT-BT/Ag Composite and its Mechanical and Dielectric Properties (PMN-PT-BT/Ag 복합체 제조 및 기계적, 유전적 특성)

  • Lim, Kyoung-Ran;Jeong, Soon-Yong;Kim, Chang-Sam;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.846-850
    • /
    • 2002
  • A PMN-PT-BT/Ag composite was prepared by surface modification with MgO sol with hoping to suppress silver's migration during sintering. The mixture of PbO, $N_2O_5,\;TiO_2\;with\;Mg(NO_3)_2$ instead of MgO was ball milled, the solvent was removed and then the dried powders were calcined at 950$^{\circ}C$/1h. The calcined powder were treated with 3.0 mol% $Ag_2O$ and 1.0 wt% MgO sol and calcined at 550$^{\circ}C$/1h. The dielectrics sintered at 1000$^{\circ}C$/4h under a flowing oxygen showed the density of 7.84g/$cm^3$, the room temperature dielectric constant of 18400, the dielectric loss of 2.4%, the specific resistivity of $0.24{\times}10^{12}{\Omega}{\cdot}cm$. It also showed the bending strength of $120.7{\pm}11.26$ MPa and the fracture toughness of $0.87{\pm}0.002\;MPam^{1/2}$ which were comparable to commercial PZT. The microstructure sonsisted of grains of ∼4${\mu}m$. SEM and SIMS analysis showed that Ag grew as ∼1${\mu}m$ and excess MgO as ∼0.5${\mu}m$.