• Title/Summary/Keyword: Ag organometallic ink

Search Result 4, Processing Time 0.02 seconds

Flash Lamp Annealing of Ag Organometallic Ink for High-Performance Flexible Electrode (플래시 기반 유기금속화합물 열처리를 통한 고성능 유연 전극 제조)

  • Yu Mi Woo;Dong Gyu Lee;Yun Sik Hwang;Jae Chan Heo;SeongMin Jeong;Yong Jun Cho;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.454-462
    • /
    • 2023
  • Flash lamp annealing (FLA) of metal nanoparticle (NP) ink has provided powerful strategies to fabricate high-performance electrodes on a flexible substrate because of its rapid processing capability (in milliseconds), low-temperature process, and compatibility with to roll-to-roll process. However, metal NPs [e.g., gold (Au), silver (Ag), copper (Cu), etc.] have limitations such as difficulty in synthesizing fine metal NPs (diameter less than 10 nm), high price, and degradation during ink storage and FLA processing. In this regard, organometallic ink has been proposed as a material that can replace metal NPs due to their low-cost (usually 1/100 times cheaper than metal nano inks), low-temperature processability, and high material stability. Despite these advantages, the fabrication of flexible electrodes through FLA treatment of organometallic compounds has not been extensively researched. In this paper, we experimentally guide how to determine the optimal conditions for forming electrodes on flexible substrates by considering material parameters, and flashlight processing parameters (energy density, pulse duration, etc) to minimize the difficulties that may arise during the FLA of organometallic ink.

Study on the characteristics of transpatent electronic Ag (10%) ink by sintering conditions (투명전자잉크 Ag(10%)의 소성조건에 따른 특성 연구)

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.59-60
    • /
    • 2008
  • In this paper, we have investigated the sintering of the organometallic silver electronic ink. We have changed the sintering temperature from 100 to $300^{\circ}C$ in the various atmospheres. The sheet resistance was abruptly changed at the temperature range between 115 and $120^{\circ}C$, due to the f of the crystalline silver resulting from the dissociation of Ag complex, which phenomenon has been confirmed by X-ray diffraction. The grain sizes of Ag films were about 50nm and 70nm at the sintering temperatures of 115 and $150^{\circ}C$, respectively.

  • PDF

Ag Nanoparticle Self-Generation and Agglomeration via Laser-Induced Plasmonic Annealing for Metal Mesh-Based Transparent Wearable Heater (레이저 기반 플라즈모닉 어닐링을 통한 은 나노입자 자가 생성 및 소결 공정과 이를 활용한 메탈메쉬 전극 기반 투명 웨어러블 히터)

  • Hwang, Yun Sik;Nam, Ui Yeon;Kim, Yeon Uk;Woo, Yu Mi;Heo, Jae Chan;Park, Jung Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.439-444
    • /
    • 2022
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) is a promising technology to fabricate flexible conducting electrodes, since it provides instantaneous, simple, and scalable manufacturing strategies without requiring costly facilities and complex processes. However, the metal NPs are quite expensive because complicated synthesis procedures are needed to achieve long-term reliability with regard to chemical deterioration and NP aggregation. Herein, we report laser-induced Ag NP self-generation and sequential sintering process based on low-cost Ag organometallic material for demonstrating high-quality microelectrodes. Upon the irradiation of laser with 532 nm wavelength, pre-baked Ag organometallic film coated on a transparent polyimide substrate was transformed into a high-performance Ag conductor (resistivity of 2.2 × 10-4 Ω·cm). To verify the practical usefulness of the technology, we successfully demonstrated a wearable transparent heater by using Ag-mesh transparent electrodes, which exhibited a high transmittance of 80% and low sheet resistance of 7 Ω/square.

Formation of Metal Mesh Electrodes via Laser Plasmonic Annealing of Metal Nanoparticles for Application in Flexible Touch Sensors (금속 나노 파티클의 레이저 플라즈모닉 어닐링을 통한 메탈메쉬 전극 형성과 이를 활용한 유연 터치 센서)

  • Seongmin Jeong;Yun Sik Hwang;Yu Mi Woo;Yong Jun Cho;Chan Hyeok Kim;Min Gi An;Ho Seok Seo;Chan Hyeon Yang;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.223-229
    • /
    • 2024
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) holds significant promise as a technology for producing flexible conducting electrodes. This method offers immediate, straightforward, and scalable manufacturing approaches, eliminating the need for expensive facilities and intricate processes. Nevertheless, the metal NPs come at a high cost due to the intricate synthesis procedures required to ensure long-term reliability in terms of chemical stability and the prevention of NP aggregation. Herein, we induced the self-generation of metal nanoparticles from Ag organometallic ink, and fabricated highly conductive electrodes on flexible substrates through laser-assisted plasmonic annealing. To demonstrate the practicality of the fabricated flexible electrode, it was configured in a mesh pattern, realizing multi-touchable flexible touch screen panel.