• 제목/요약/키워드: Ag nano-coating

검색결과 37건 처리시간 0.025초

무전해 도금에 의해 성장되어진 은 나노결정의 반사율 특성 (Reflectivity characteristics of Ag nano-crystals grown by electroless plating)

  • 김신우
    • 한국결정성장학회지
    • /
    • 제23권5호
    • /
    • pp.218-223
    • /
    • 2013
  • 본 연구에서는 LCD 또는 LED를 이용한 디스플레이 장치의 BLU 반사판으로 사용할 목적으로 무전해도금에 의하여 플라스틱 기판위에 성장되어진 은 나노코팅의 반사율 특성을 조사하였다. 은 나노코팅의 미세구조는 아주 미세한 나노크기의 은 결정들로 이루어진 다결정 나노코팅인 것을 확인할 수 있었으며 코팅 층의 두께가 증가함에 따라 환원, 석출된 은 나노결정입자의 크기도 비례하여 증가되었다. 은 나노코팅의 두께가 증가함에 따라 가시광선 영역의 반사율이 감소하였으며 파장이 짧을수록 반사율의 감소가 더 심하였다. 나노코팅의 두께 증가에 따른 반사율의 감소는 환원 석출된 은나노결정의 크기와 밀접하게 관련된 것으로 은 결정입자가 클수록 요철의 정도가 심하여 반사율이 감소하는 것으로 생각되어진다. 그래서 가능한 미세한 은 나노결정을 환원, 석출시키고 코팅두께를 얇게 하는 것이 반사율 관점에서 바람직한 것으로 판단되어진다.

스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가 (Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process)

  • 김민성;김영희;송호연;민영기;이병택
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

수열흡착법을 이용한 은 점코팅된 구리 나노분말의 합성과 미세조직 (Microstructure and Synthesis of Ag Spot-coated Cu Nanopowders by Hydrothermal-attachment Method using Ag Colloid)

  • 김형철;한재길
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.546-551
    • /
    • 2011
  • Ag spot-coated Cu nanopowders were synthesized by a hydrothermal-attachment method (HA) using oleic acid capped Ag hydrosol. Cu nano powders were synthesized by pulsed wire exploding method using 0.4 mm in diameter of Cu wire (purity 99.9%). Synthesized Cu nano powders are seen with comparatively spherical shape having range in 50 nm to 150 nm in diameter. The oleic acid capped Ag hydrosol was synthesized by the precipitation-redispersion method. Oleic acid capped Ag nano particles showed the narrow size distribution and their particle size were less than 20 nm in diameter. In the case of nano Ag-spot coated Cu powders, nanosized Ag particles were adhered in the copper surface by HAA method. The components of C, O and Ag were distributed on the surface of copper powder.

Phytogenic silver nanoparticles (Alstonia scholaris) incorporated with epoxy coating on PVC materials and their biofilm degradation studies

  • Supraja, Nookala;Tollamadugu, Naga Venkata Krishna Vara Prasad;Adam, S.
    • Advances in nano research
    • /
    • 제4권4호
    • /
    • pp.281-294
    • /
    • 2016
  • The advantages of nano-scale materials (size 1-99 nm in at least in one dimension) could be realized with their potential applications in diversified avenues. Herein, we report for the first time on the successful synthesis of homogeneous epoxy coatings containing phytogenic silver nanoparticles (Ag) on PVC and glass substrates by room-temperature curing of fully mixed epoxy slurry diluted by acetone. Alstonia scholaris bark extract was used to reduce and stabilize the silver ions. The surface morphology and mechanical properties of these coatings were characterized using the techniques like, UV-Vis (UV-Visible) spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FT-IR), Epifluorescence microscopy and scanning electron microscopy (SEM). The effect of incorporating Ag nanoparticles on the biofilm (scale) resistant epoxy-coated PVC was investigated by total viable counts ($CFU/cm^2$) from epoxy coating from (Initial) $1^{st}$ day to $25^{th}$ days. The phytogenic Ag nanoparticles were found to be significantly improving the microstructure of the coating matrix and thus enhanced the anti-biofilm performance of the epoxy coating. In addition, the antimicrobial mechanism of Ag nanoparticles played an important role in improving the anti-biofilm performance of these epoxy coatings.

Properties of Blocking Layer with Ag Nano Powder in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.105-109
    • /
    • 2016
  • We prepared a working electrode (WE) with a blocking layer (BL) containing 0 ~ 0.5 wt% Ag nano powders to improve the energy conversion efficiency (ECE) of dye sensitized solar cell (DSSC). FESEM and micro-Raman were used to characterize the microstructure and phase. UV-VIS-NIR spectroscopy was employed to determine the adsorption of the WE with Ag nano powders. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with Ag nano powders. From the results of the microstructural analysis, we confirmed that Ag nano powders with particle size of less than 150 nm were dispersed uniformly on the BL. Based on the phase and adsorption analysis, we identified the existence of Ag and found that the adsorption increased when the amount of Ag increased. The photovoltaic results show that the ECE became 4.80% with 0.3 wt%-Ag addition compared to 4.31% without Ag addition. This improvement was due to the increase of the localized surface plasmon resonance (LSPR) of the BL resulting from the addition of Ag. Our results imply that we might be able to improve the efficiency of a DSSC by proper addition of Ag nano powder to the BL.

Insulated, Passivated and Adhesively-Promoted Bonding Wire using Al2O3 Nano Coating

  • Soojae Park;Eunmin Cho;Myoungsik Baek;Eulgi Min;Kyujung Choi
    • 마이크로전자및패키징학회지
    • /
    • 제31권2호
    • /
    • pp.1-8
    • /
    • 2024
  • Bonding wires are composed of conductive metals of Au, Ag & Cu with excellent electrical conductivities for transmitting power and signals to wafer chips. Wire metals do not provide electrical insulation, adhesion promoter and corrosion passivation. Adhesion between metal wires is extremely weak, which is responsible for wire cut failures during thermal cycling. Organic coating for electrical insulation does not satisfy bondability and manufacturability, and it is complex to apply very thin organic coating on metal wires. Automotive packages require enhanced reliability of packages under harsh conditions. LED and power packages are susceptible to wire cut failures. Contrary to conventional OCB behaviors, forming gas was not required for free air ball formation for both Ag and Pd-coated Cu wires with Al2O3 passivation.

Evaluation of the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles: An in vitro study

  • Rashin Bahrami;Maryam Pourhajibagher;lireza Badiei;Reza Masaeli;Behrad Tanbakuchi
    • 대한치과교정학회지
    • /
    • 제53권1호
    • /
    • pp.16-25
    • /
    • 2023
  • Objective: We aimed to evaluate the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles (nano-Ag and nano-ZnO, respectively). Methods: In this experimental study, 30 orthodontic bands were divided into three groups (n = 10 each): control (uncoated band), Ag (silver-coated band), and ZnO (zinc oxide-coated band). The electrostatic spray-assisted vapor deposition method was used to coat orthodontic bands with nano-Ag or nano-ZnO. The biofilm inhibition test was used to assess the antimicrobial effectiveness of nano-Ag and nano-ZnO against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Biocompatibility tests were conducted using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The groups were compared using oneway analysis of variance with a post-hoc test. Results: The Ag group showed a significantly higher reduction in the number of L. acidophilus, C. albicans, and S. mutans colonies than the ZnO group (p = 0.015, 0.003, and 0.005, respectively). Compared with the control group, the Ag group showed a 2-log10 reduction in all the microorganisms' replication ability, but only S. mutants showed a 2-log10 reduction in replication ability in the ZnO group. The lowest mean cell viability was observed in the Ag group, but the difference between the groups was insignificant (p > 0.05). Conclusions: Coating orthodontic bands with nano-ZnO or nano-Ag induced antimicrobial effects against oral pathogens. Among the nanoparticles, nano-Ag showed the best antimicrobial activity and nano-ZnO showed the highest biocompatibility.

RE Magnetron Sputtering에 의해 제조된 HAp와 HAp-Ag복합코팅층의 미세조직 (Microstructures of HAp and HAp-Ag Composite Coating Layer Prepared by RS Magnetron Sputtering)

  • Lee, Hee-Jung;Oh, Ik-Hyun;Park, Sang-Shik;Lee, Byong-Taek
    • 한국세라믹학회지
    • /
    • 제41권4호
    • /
    • pp.328-333
    • /
    • 2004
  • RF magnetron sputtering법에 의해 단상의 하이드록시아파타이트와 하이드록시아파타이트은 복합코팅층을 ZrO$_2$와 Si 웨이퍼 기판에 코팅하였다. 이들 코팅층들의 두께 0.7∼1.0$\mu\textrm{m}$ 범위였으며 또한 거칠기(roughness)는 3∼4nm였다. 열처리된 HAp 코팅층은 나노크기의 결정들로 구성되어 있었으며, 반면 Ag가 함유된 복합코팅층의 경우 결정질과 비결정질이 혼재되어 있었다. 열처리 전 HAp 코팅층의 Ca/P비는 1.9였고, Ag의 함량이 증가함에 따라 비는 감소하는 경향을 나타내었다. 또한 Ag 함량이 증가함에 따라 HAp코팅층의 미소 경도는 감소하였다.

ZrO2-Ag의 복합화 공정에 따른 기계적 특성 및 미세조직 평가 (A Study of Mechanical Properties and Microstructure of ZrO2-Ag Depending on the Composite Route)

  • 여인철;한재길;강인철
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.416-423
    • /
    • 2012
  • This paper introduces an effect of a preparing $ZrO_2$-Ag composite on its mechanical properties and microstructure. In present study, $ZrO_2$-Ag was prepared by reduction-deposition route and wetting dispersive milling method, respectively. Two type of Ag powders (nano Ag and micron Ag size, respectively) were dispersed into $ZrO_2$ powder during wetting dispersive milling in D.I. water. Each sample was sintered at $1450^{\circ}C$ for 2hr in atmosphere, and then several mechanical tests and analysis of microstructure were carried out by bending test, hardness, fracture toughness and fracture surface microstructure. As for microstructure, the Ag coated $ZrO_2$ showed homogeneously dispersed Ag in $ZrO_2$ in where pore defect did not appear. However, $ZrO_2$-nano Ag and $ZrO_2$-micro Ag composite appeared Ag aggregation and its pore defect, which carried out low mechanical property and wide error function value.

실크 스크린 프린팅 기법을 적용한 용액 기반의 탄소나노튜브와 은 나노 와이어 코팅 기술 개발 (Development of Solution-based Carbon Nanotube and Silver Nanowire Coating Technology using Silk Printing Technique)

  • 김무진
    • 산업융합연구
    • /
    • 제21권9호
    • /
    • pp.33-39
    • /
    • 2023
  • 나노 크기의 물질은 여러 기판에 코팅이 가능하며, 이 소재는 투명하며, 전도성이 있기 때문에 전자소자의 투명전극이나 전원 공급용 전극으로 활용이 가능하다. 본 연구에서는 CNT와 Ag 나노와이어를 실크스크린 기법을 이용하여 반복적으로 코팅하였으며, 5번까지 형성한 샘플을 제작하여, 광학 및 전기 특성을 측정하고, 분석하였다. 실크스크린 코팅된 샘플 표면은 코팅 방향에 의한 자국이 형성되었음을 확인하였으며, 코팅한 횟수에 따른 투과도 및 표면 저항의 경향성을 조사하였다. 코팅 횟수가 늘어남에 따라 투과도 및 표면 저항은 감소하는 경향을 나타내었다. 특히 투과도의 경우 2번과 5번에서 변화폭이 컸으며, 이러한 변화는 Ag 나노와이어 코팅에 의한 것으로 확인되었다. 또한, 700nm를 기점으로 이전 파장 영역에서는 파장에 따라 증가하는 반면 이상에서는 감소하는 경향을 보였다. 표면 저항은 1번 코팅했을 때 9Ω/cm2 에서 5번 코팅을 진행하였을 때 0.856Ω/cm2 으로 낮아졌다. 투과도와 유사하게 Ag에 의하여 저항값이 영향을 받는다는 것을 알 수 있었다. 향후 Ag 나노와이어의 Ag 농도 및 다른 방법으로 코팅하여 투명도가 높은 CNT와의 융합을 통하여 원하는 투명 전극을 구현하여 전자소자에 적용할 필요가 있다.