• Title/Summary/Keyword: Ag doping

Search Result 90, Processing Time 0.026 seconds

Electrochemical Properties of Polypyrrole-Glucose Oxidase Enzyme Electrode Depending on Dopant Size (Polypyrrole-Glucose Oxidase 효소전극의 배위자 크기에 따른 전기 화학적 특성)

  • 김현철;구할본;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.745-748
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-TS, the redox potential was about -0.3 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-T S. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Electrochemical Properties of Polypyrrole Enzyme Electrode Immobilized Glucose Oxidase with Different Ligand (포도당 산화효소를 고정화한 Polypyrrole 효소전극의 배위자 변화에 다른 전기화학적 특성)

  • Kim, Hyun-Cheol;Gu, Han-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.529-532
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-TS, the redox potential was about -0.3 V vs. Ag/ AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-TS Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Effects of Codoping with Fluorine on the Properties of ZnO Thin Films

  • Heo, Young-Woo;Norton, D.P.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.738-742
    • /
    • 2006
  • We report on the effects of co-doping with fluorine on properties of ZnO thin films grown by pulsed-laser deposition. The transport characteristics of Ag-F and Li-F codoped ZnO films were determined by Hall-effect measurements at room temperature. Ag-F codoped ZnO films showed n-type semiconducting behaviors. An ambiguous carrier type was observed in Li-F codoped ZnO films grown at a temperature of 500$^{\circ}C$ with the oxygen pressures of 20 and 200 mTorr. The qualities of the codoped ZnO films were studied by X-ray diffraction, atomic force microscopy, X-ray photoemission spectroscopy, and photoluminescence.

Electrochemical Properties of Polypyrrole Enzyme Electrode Immobilized Glucose Oxidase with Different Ligand (포도당 산화효소를 고정화한 Polypyrrole 효소전극의 배위자 변화에 따른 전기화학적 특성)

  • 김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.529-532
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-75, the redox potential was about -0.3 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-TS Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a tent of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Electrochemical Properties of Polypyrrole Nanotubules Enzyme Electrode Immobilized with Glucose Oxidase (포도당 산화효소가 고정화된 Popyrrole Nanotubules 효소전극의 전기화학적 특성)

  • 김현철;구할본;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.909-912
    • /
    • 2000
  • We synthesized polypyrrole (PPy) nanotubules by oxidative polymerization of the pyrrole monomer within the pores of a polycarbonate template. The electrochemical behavior was investigated using cyclic voltammetry. The redox potential was about -0.5 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for PPy film. It is considered as the backbone grows according to the pore wall. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. By electrochemical doping of glucose oxidase (GOx) on PPy nanotubules, an enzyme electrode has been fabricated. The kinetic parameter of biochemical reaction with glucose was evaluated. The formal Michaelis constant and maximum current calculated by computer were about 11.4 mmol $dm^3$ and 170.85 A respectively. Obviously, an affinity for the substrate and current response of the PPy nanotubules enzyme electrode are rather good, comparing with that of PPy film.

  • PDF

Influence of sputtering parameter on the properties of silver-doped zinc oxide sputtered films

  • S. H. Jeong;Lee, S. B.;J.H. Boo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.58-58
    • /
    • 2003
  • Silver doped ZnO (SZO) films were prepared by rf magnetron sputtering on glass substrates with extraordinary designed ZnO target. With the doping source for target, use AgNO$_3$ powder on a various rate (0, 2, and 4 wt.%). We investigated dependence of coating parameter such as dopant content in target and substrate temperature in the SZO films. The SZO films have a preferred orientation in the (002) direction. As amounts of the Ag dopant in the target were increased, the crystallinity and the transmittance and optical band gap were decreased. And the substrate temperature were increased, the crystallinity and the transmittance were increased. But the crystallinity and the transmittance of SZO films were retrograde at 200$^{\circ}C$. Upside facts were related with composition. In addition, the Oxygen K-edge features of the SZO films were investigated by using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Changes of optical band gap of the SZO films were explained compared with XRD, XPS and NEXAFS spectra.

  • PDF

Removal of Laser Damage in Electrode Formed by Plating in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에서 도금을 이용한 전극 형성 시 발생되는 레이저 손상 제거)

  • Jeong, Myeong Sang;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.370-375
    • /
    • 2016
  • In this paper, we investigated the electrical properties of crystalline silicon solar cell fabricated with Ni/Cu/Ag plating. The laser process was used to ablate silicon nitride layer as well as to form the selective emitter. Phosphoric acid layer was spin-coated to prevent damage caused by laser and formed selective emitter during laser process. As a result, the contact resistance was decreased by lower sheet resistance in electrode region. Low sheet resistance was obtained by increasing laser current, but efficiency and open circuit voltage were decreased by damage on the wafer surface. KOH treatment was used to remove the laser damage on the silicon surface prior to metalization of the front electrode by Ni/Cu/Ag plating. Ni and Cu were plated for each 4 minutes and 16 minutes and very thin layer of Ag with $1{\mu}m$ thickness was plated onto Ni/Cu electrode for 30 seconds to prevent oxidation of the electrode. The silicon solar cells with KOH treatment showed the 0.2% improved efficiency compared to those without treatment.

Junction of Porous SiC Semiconductor and Ag Alloy (다공질 SiC 반도체와 Ag계 합금의 접합)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.576-583
    • /
    • 2018
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its band gap is larger than that of silicon and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, porous n-type SiC ceramics fabricated from ${\beta}-SiC$ powder have been found to show a high thermoelectric conversion efficiency in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$. For the application of SiC thermoelectric semiconductors, their figure of merit is an essential parameter, and high temperature (above $800^{\circ}C$) electrodes constitute an essential element. Generally, ceramics are not wetted by most conventional braze metals,. but alloying them with reactive additives can change their interfacial chemistries and promote both wetting and bonding. If a liquid is to wet a solid surface, the energy of the liquid-solid interface must be less than that of the solid, in which case there will be a driving force for the liquid to spread over the solid surface and to enter the capillary gaps. Consequently, using Ag with a relatively low melting point, the junction of the porous SiC semiconductor-Ag and/or its alloy-SiC and/or alumina substrate was studied. Ag-20Ti-20Cu filler metal showed promise as the high temperature electrode for SiC semiconductors.

Doping Controlled Emitter with a Transparent Conductor for Crystalline Si Solar Cells

  • Kim, Min-Geon;Kim, Hyeon-Yeop;Choe, U-Jin;Lee, Jun-Sin;Kim, Jun-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.590-590
    • /
    • 2012
  • A transparent conducting oxide (TCO) layer was applied in crystalline Si (c-Si) solar cells without use of the conventional SiNx-coating. A high quality indium-tin-oxide (ITO) layer was directly deposited on an emitter layer of a Si wafer. Three different types of emitters were formed by controlling the phosphorous diffusion condition. A light-doped emitter forming a thinner emitter junction showed an improved photoconversion efficiency of 14.1% comparing to 13.2% of a heavy-doped emitter. This was induced by lower recombination within a narrower depletion region of the light-doped emitter. In the aspect of light management, the intermediate refractive index of ITO is effective to reduce the light reflection leading the enhanced carrier generation in a Si absorber. For the electrical aspect, the ITO layer serves as an efficient electrical conductor and thus relieves the burden of high contact resistance of the light-doped emitter. Additionally, the ITO works as a buffer layer of Ag and Si and certainly prevents the shunting problem of Ag penetration into Si emitter region. It discusses an efficient design scheme of TCO-embedded emitter Si solar cells.

  • PDF

Magnetic Properties of Chip Inductors Prepared with V2O5-doped Ferrite Pastes (V2O5 도핑한 페라이트 페이스트로 제조된 칩인덕터의 자기적 특성)

  • Je, Hae-June
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • The purpose of this study Is to investigate the effect of $V_2$O$_{5}$ addition on the microstructures and magnetic properties of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2O_{5}$-doped NiCuZn ferrite pastes. With increasing the $V_2O_{5}$ content, the exaggerated grain growth of ferrite layers was developed due to the promotion of Ag diffusion and Cu segregation into the grain boundaries oi ferrites, which affected significantly the magnetic properties of the chip inductors. After sintering at $900^{\circ}C$, the inductance at 10 MHZ of the 0.5 wt% $V_2O_{5}$-doped chip inductor was 3.7 ${\mu}$H less than 4.2 ${\mu}$H of the 0.3 wt% $V_2O_{5}$-doped one, which was thought to be caused by the residual stress at the ferrite layers increased with the promotion of Ag diffusion and Cu segregation. The quality factor of the 0.5 wt% $V_2O_{5}$-doped chip inductor decreased with increasing the sintering temperature, which was considered to be caused by the electrical resistivity of the ferrite layer decreased with the promotion of Ag/cu segregation at the grain boundaries and the growth of the mean grain size of ferrite due to exaggerated grain growth of ferrite layers.