• Title/Summary/Keyword: Ag/$Al_2O_3$ Catalysts

Search Result 13, Processing Time 0.021 seconds

Size and Shape Effect of Metal Oxides on Hydrocarbon Selective Catalytic Reduction of Nitrogen Oxides (금속 산화물 촉매의 크기와 형태에 따른 질소산화물의 탄화수소 선택적 촉매환원 특성)

  • Ihm, Tae-Heon;Jo, Jin-Oh;Hyun, Young Jin;Mok, Young Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.20-28
    • /
    • 2015
  • This work investigated the size and shape effect of ${\gamma}$-alumina-supported metal oxides on the hydrocarbon selective catalytic reduction of nitrogen oxides. Several metal oxides including Ag, Cu and Ru were used as the catalysts, and n-heptane as the reducing agent. For the Ag/${\gamma}$-alumina catalyst, the $NO_x$ reduction efficiency in the range of $250{\sim}400^{\circ}C$ increased as the size of Ag decreased (20 nm>50 nm>80 nm). The shape effect of metal oxides on the $NO_x$ reduction was examined with spherical- and wire-shape nanoparticles. Under identical condition, higher catalytic activity for $NO_x$ reduction was observed with Ag and Cu wires than with the spheres, while spherical- and wire-shape Ru exhibited similar $NO_x$ reduction efficiency to each other. Among the metal oxides examined, the best catalytic activity for $NO_x$ reduction was obtained with Ag wire, showing almost complete $NO_x$ removal at a temperature of $300^{\circ}C$. For Cu and Ru catalysts, considerable amount of NO was oxidized to $NO_2$, rather than reduced to $N_2$, leading to lower $NO_x$ reduction efficiency.

Selective Catalytic Oxidation of Ammonia in the Presence of Manganese Catalysts (망간촉매하에서 암모니아의 선택적 산화반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig;Cha, Wang Seog
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.498-505
    • /
    • 2008
  • The selective catalytic oxidation of ammonia was carried out in the presence of natural manganese ore (NMO) and manganese as catalysts using a homemade 1/4" reactor at $10,000hr^{-1}$ of space velocity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. The manganese catalyst resulted in a substantial ammonia conversion, with adsorption activation energies of oxygen and ammonia of 10.5 and 22.7 kcal/mol, respectively. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported manganese catalyst was applied. Increasing the manganese weight percent by 15 wt% increased the lower temperature activity, but 20 wt% of manganese had an adverse effect on the reaction results. An important finding of the study was that the manganese catalyst benefits from a strong sulfur tolerance in the conversion of ammonia to nitrogen.

Conversion of NOx by Plasma-hydrocarbon Selective Catalytic Reduction Process (플라즈마-탄화수소 선택적 촉매환원공정을 이용한 질소산화물 저감 연구)

  • Jo, Jin-Oh;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2018
  • A plasma-catalytic combined process was used as an attempt to improve the conversion efficiency of nitrogen oxides ($NO_x$) over a wide temperature range ($150{\sim}500^{\circ}C$) to cope with the exhaust gas whose temperature varies greatly. Since the catalytic $NO_x$ reduction is effective at high temperatures where the activity of the catalyst itself is high, the $NO_x$ reduction was carried out without plasma generation in the high temperature region. On the other hand, in the low temperature region, the plasma was created in the catalyst bed to make up for the decreased catalytic activity, thereby increasing the $NO_x$ conversion efficiency. Effects of the types of catalysts, the reaction temperature, the concentration of the reducing agent (n-heptane), and the energy density on $NO_x$ conversion efficiency were examined. As a result of comparative analysis of various catalysts, the catalytic $NO_x$ conversion efficiency in the high temperature region was the highest in the case of the $Ag-Zn/{\gamma}-Al_2O_3$ catalyst of more than 90%. In the low temperature region, $NO_x$ was hardly removed by the hydrocarbon selective reduction process, but when the plasma was generated in the catalyst bed, the $NO_x$ conversion sharply increased to about 90%. The $NO_x$ conversion can be maintained high at temperatures of $150{\sim}500^{\circ}C$ by the combination of plasma in accordance with the temperature change of the exhaust gas.