DOI QR코드

DOI QR Code

Size and Shape Effect of Metal Oxides on Hydrocarbon Selective Catalytic Reduction of Nitrogen Oxides

금속 산화물 촉매의 크기와 형태에 따른 질소산화물의 탄화수소 선택적 촉매환원 특성

  • Ihm, Tae-Heon (Dept. of Chemical and Biological Engineering, Jeju National University) ;
  • Jo, Jin-Oh (Dept. of Chemical and Biological Engineering, Jeju National University) ;
  • Hyun, Young Jin (Dept. of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Dept. of Chemical and Biological Engineering, Jeju National University)
  • 임태헌 (제주대학교 생명화학공학과) ;
  • 조진오 (제주대학교 생명화학공학과) ;
  • 현영진 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과)
  • Received : 2015.07.09
  • Accepted : 2015.10.01
  • Published : 2015.10.30

Abstract

This work investigated the size and shape effect of ${\gamma}$-alumina-supported metal oxides on the hydrocarbon selective catalytic reduction of nitrogen oxides. Several metal oxides including Ag, Cu and Ru were used as the catalysts, and n-heptane as the reducing agent. For the Ag/${\gamma}$-alumina catalyst, the $NO_x$ reduction efficiency in the range of $250{\sim}400^{\circ}C$ increased as the size of Ag decreased (20 nm>50 nm>80 nm). The shape effect of metal oxides on the $NO_x$ reduction was examined with spherical- and wire-shape nanoparticles. Under identical condition, higher catalytic activity for $NO_x$ reduction was observed with Ag and Cu wires than with the spheres, while spherical- and wire-shape Ru exhibited similar $NO_x$ reduction efficiency to each other. Among the metal oxides examined, the best catalytic activity for $NO_x$ reduction was obtained with Ag wire, showing almost complete $NO_x$ removal at a temperature of $300^{\circ}C$. For Cu and Ru catalysts, considerable amount of NO was oxidized to $NO_2$, rather than reduced to $N_2$, leading to lower $NO_x$ reduction efficiency.

탄화수소 선택적 촉매환원공정에서 ${\gamma}$-알루미나에 지지된 금속 산화물 촉매의 크기 및 형태에 따른 질소산화물 ($NO_x$) 저감 특성에 대해 조사하였다. 환원촉매로는 Ag, Cu 및 Ru를 사용하였으며, n-heptane을 환원제로 사용하였다. Ag/${\gamma}$-$Al_2O_3$ 촉매의 경우 온도범위 $250{\sim}400^{\circ}C$에서 20 nm>50 nm>80 nm 순으로 Ag의 크기가 작을수록 $NO_x$ 전환효율이 높게 나타났다. 금속 산화물 촉매의 형태에 따른 영향은 구형과 선형에 대해 살펴보았다. Ag와 Cu는 동일한 조건에서 선형이 구형보다 $NO_x$ 전환효율이 높은 것으로 나타났으나, Ru의 경우에는 형태에 따른 영향이 거의 관찰되지 않았다. 사용된 금속산화물 촉매 중에서 Ag를 사용했을 때 $NO_x$ 저감효율이 가장 높았으며, 선형의 Ag를 사용했을 때 $300^{\circ}C$의 반응온도에서 대부분의 $NO_x$를 제거할 수 있었다. Cu와 Ru 촉매상에서는 NO가 환원되기보다는 $NO_2$로의 산화반응이 우세하여 전체적으로 $NO_x$ 저감효율이 낮게 나타났다.

Keywords

References

  1. Kim, M. C. and Lee, C. G., A study of hydrocarbon SCR (selective catalytic reduction) on Ag/${\gamma}$-Al2O3 catalyst, Anal. Sci. Technol. 18, 139-146 (2005)
  2. Kim, B. Shin, Yoon, J. S., Shin, H. D., and Min, W., Preparation and Thermal Degradation Behavior of $WO_3-TiO_2$ Catalyst for Selective Catalytic Reduction of NOx, Kor. J. Met. Mater. 49, 596-600 (2011) https://doi.org/10.3365/KJMM.2011.49.8.596
  3. Lee, J., Park, J., Kim, S., Yoo, S., and kim, J., Kinetics of Hydrogen Rich Ethanol as Reductant for HC-SCR over Al2O3Supported Ag Catalyst, Trans. Of the Korean Hydrogen and New Energy Society., 21, 519-525 (2010)
  4. Kim, S. S., Tang, D. H., and Hong, S. C., A Study of the Reaction Characteristics on Hydrocarbon Selective Catalytic Reduction of NOx Over Various Noble Metal Catalysts, Clean Technology., 17, 225-230, (2011)
  5. Lee, J., Park, J., Kim, S., Yoo, S., and Kim, J., Effect of SOx on HC-SCR Kinetics over Ag/$Al_2O_3$ Catalyst, Trans. of the Korean Hydrogen and New Energy Society,. 22, 714-720, (2011)
  6. Ko, S., Kim, J., Kim, M., Cho, Y., and Park, Y., Characteristics of SCR-Catalytic with de-NOx System in Thermal Power plants, J. of Korean Oil Chemists' Soc,. 30, 451-460, (2013) https://doi.org/10.12925/jkocs.2013.30.3.451
  7. Traa, Y., Burger, B., and Weitkamp, J., Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons, Microporous Mesoporous Mater., 30, 3-41, (1999) https://doi.org/10.1016/S1387-1811(99)00030-X
  8. Mayne, J., Dahlberg, K., Westrich, T., Tadd, A., and Schwank, J., Effect of metal particle size on sulfur tolerance of Ni catalysts during autothermal reforming of isooctane, Appl. Catal., A, 400, 203-214, (2011) https://doi.org/10.1016/j.apcata.2011.04.039
  9. Meng, B., Zhao, Z., Wang, X., Liang, J., and Qiu, J., Selective catalytic reduction of nitrogen oxides by ammonia over $Co_3O_4$ nanocrystals with different shapes, Appl. Catal., B, 129, 491-500, (2013) https://doi.org/10.1016/j.apcatb.2012.09.040
  10. He, H., Zhang, C., and Yu, Y., A comparative study of Ag/$Al_2O_3$ and Cu/$Al_2O_3$ catalysts for the selective catalytic reduction of NO by $C_3H_6$, Catal. Today., 90, 191-197, (2004) https://doi.org/10.1016/j.cattod.2004.04.026
  11. Furusawa, T., Seshan, K., Lercher, J., Lefferts, L., and Aika, K., Selective reduction of NO to $N_2in$ the presence of oxygen over supported silver catalysts, Appl. Catal., B, 37, 205-216, (2002) https://doi.org/10.1016/S0926-3373(01)00337-X
  12. Shimizu, K., Satsuma, A., and Hattori, T., Catalytic performance of Ag-$Al_2O_3$ catalyst for the selective catalytic reduction of NO by higher hydrocarbons, Appl. Catal., B, 25, 239-247, (2000) https://doi.org/10.1016/S0926-3373(99)00135-6
  13. Heouel, V., Millington, P., Rajaram, R., and Tsolakis, A., Fuel effects on the activity of silver hydrocarbon-SCR catalysts, Appl. Catal., B. 73, 203-207, (2007) https://doi.org/10.1016/j.apcatb.2006.12.005
  14. Li, L., Qu, L., Cheng, J., Li, J., and Hao, Z., Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts, Appl. Catal., B, 88, 224-231, (2009) https://doi.org/10.1016/j.apcatb.2008.09.032
  15. Worch, D., Suprun, W., and Glaser, R., Supported transition metal-oxide catalysts for HC-SCR DeNOx with propene, Catal. Today., 176, 309-313, (2011) https://doi.org/10.1016/j.cattod.2010.12.008