• Title/Summary/Keyword: After harvesting

Search Result 808, Processing Time 0.036 seconds

Effects of Harvesting Time on Yields of Carthami Flos and Grain in Cathamus tinctoris L. (잇꽃 수확시기(收穫時期)에 따른 홍화(紅花) 및 종실(種實) 수량(收量))

  • Choi, Byoung-Ryourl;Park, Kyeong-Yeol;Kang, Chang-Sung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.3
    • /
    • pp.232-236
    • /
    • 1997
  • This experiment was conducted to determinate the optimum harvesting time of Carthami Flos and grain in safflower. In dry Carthami Flos yields harvested at different days after flowering, threre was no significant difference between 2 days and 4 days, however, yield harvested at 6 days was decreased significantly compared with 2 days after flowering. As the harvesting time were delayed, lightness (L') and redness (a') of dry Carthami Flos were decreased but yellowness (b') of that was increased. Color differences (${\Delta}E'ab$) of dry Carthami Flos between harvesting days after flowering were not visible between 4 days and 6 days but between those (4 days and 6 days) and 2 days were visible. As the result, the optimum harvesting time of Carthami Flos was 4 days after flowering. Grain yields and its components were affected by not harvesting Carthami Flos but grain harvesting time. Threre was no significant difference in number of grain per flower head, percentage of ripened grain between grain harvesting time. However, weight of 1000 grains and grain yields increased until 20 days after flowering. As a conclusion, the optimum harvesting time was 4 days after flowering for Carthami Flos and 20 days for grain regardless Carthami Flos harvesting time.

  • PDF

The Studies on Harvesting Time of Stalk Cutting in Burley Tobacco (버어리종의 대말림 수확시기에 관한 연구)

  • Bae, Seong-Guk;Han, H.C.;Choo, H.G.
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.2
    • /
    • pp.144-150
    • /
    • 1992
  • This study was carried out to investigate the effect of yield and quality on the harvesting time and methods of stalk cutting in Burley Tobacco.3 harvesting methods and 4 harvesting times of stalk cutting were compared to priming. The yield and quality were high when cut the stalk after second priming in stalk curing. It was also desirable that cut the stalk after second priming in stalk curing. It was also desirable that cut the stalk on 30 days after topping for standard fertilization(N-P2O5-K2O= 17.5-17.5-35.0kg/10a) plot, and 30-35 days after topping for 30% increased fertilization.

  • PDF

A Study on Mechanized System of Barley Harvesting (보리의 기계수확체계(機械收穫體系) 시험(試驗))

  • Kim, Jeung Soo;Lee, Dong Hyeon;Baek, Poong Ki;Jeung, Doo Ho
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.36-44
    • /
    • 1983
  • Farm population was rapidly decreasing due to shift of the people from farm sector to the non-farm sector caused by the economic growth of the country. Especially, a great shortage of farm labor in busy farming period in June and October is becoming a serious problem in maintaining or promoting land productivity. The peak of labor requirement in summer is caused by rice transplanting and barley harvesting. In order to reduce the restrictions imposed on farm management by the concurrence of labor requirement and the lack of labor, the experimental study for mechanization of barley harvesting has been carried out in the fields. 1. The machines for barley harvesting were knap-sack type reapers, windrow reaper (power tiller attachment), binder and combine. The order of higher efficiency of machine for barley harvesting was combine, binder, windrow reaper (WR), knapsack type reaper 1(KSTR1), and knap sack type reaper 2(KSTR2; mist and duster attachment). 2. The ratio of grain loss for the manual, binder, and combine plot was about four percent of total field yield. 3. The total yield of barley in 35 days and 40 days harvesting after heading were 514 kg and 507kg per 10 ares respectively. The yield of 35 days-plot was higher than other experimental plots. 4. The lowest yield was recorded in 30 days-plot due to the large quantity of immatured grains and having lighter 1000-grain weight. The ratio of immatured grains was 2.66 percent and 1000-grain weight was 29.4 grams. 5. The total harvesting cost of the windrow reaper was 10,178 won per 10 ares. It was the lowest value compared to other machines. The next were combine, binder, KSTR1, KSTR2, and manual in sequence. As a result, the optimum time of barley harvesting for mechanization was 35-40 days after heading. Combine, binder, and windrow reaper were recommended as the suitable machines for barley harvesting in the work efficiency. However, in total harvesting cost, the windrow reaper was the most promising machine for barley harvesting.

  • PDF

Effects of harvesting times on pasting properties of starch in colored rices

  • Kim, Sang Kuk;Song, Young Un;Shin, Jong Hee;Kim, Se Jong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.329-329
    • /
    • 2017
  • The study was conducted to investigate the effects of different harvesting time on pasting properties of starch in three colored rices. Seven major parameters of starch pasting properties, peak viscosity (PKV), hot pasting viscosity (HPV), cool pasting viscosity (CPV), setback (CPV minus PKV), breakdown (PKV minus HPV), peak time, and pasting time were determined by Rapid Visco Analyzer. The peak viscosity, hot viscosity, cool viscosity and peak time were influenced by different harvesting times. Pasting time was delayed slightly with prolonged harvesting time in all rice cultivars. Pasting temperature in each rice cultivar differed from each harvesting time, and pasting temperature of the two rice cultivars, Hongjinju and Joseongheugchal, showed the highest at the 40 days after heading and then it decreased at the final harvesting time. With the delay of the harvesting time, peak viscosity, hot viscosity, cool viscosity, setback value and pasting temperature did not exhibit a regular trend depending on their genetic characteristics. Branch chain length distribution of amylopectin was demonstrated a distinct difference among these colored rices. In changes of amylopectin branch chain-length distribution, the amylopectin structure of Hongjinju rice cultivar as affected by different harvesting time, the shortest chain length of amylopectin in rice starch harvested at 20 days after heading was characterized by the significant increase in A chains with $DP{\geq}12$ and remarked decrease in long chains $37{\leq}DP$ compared to that of 30, 40, and 50 days after heading. In particular, when harvesting time is delayed the distribution percentage of short chain (A chains with $DP{\geq}12$) was increased except for the rice which harvested 20 days after heading. The similar results were also observed in Sintoheugmi rice cultivar like that of Hongjinju rice cultivar. Otherwise, distribution percentage of the shortest chain length of amylopectin in rice starch harvested at 20 days after heading was characterized by the significant decrease in A chains with $DP{\geq}12$ and remarked increase in B chains $13{\leq}DP{\geq}24$ compared to that of 30, 40, and 50 days after heading.

  • PDF

Yield and Chemical Composition of Cassava Foliage and Tuber Yield as Influenced by Harvesting Height and Cutting Interval

  • Khang, Duong Nguyen;Wiktorsson, Hans;Preston, Thomas R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1029-1035
    • /
    • 2005
  • A 3${\times}$4 factorial field experiment with a complete randomised split-plot design with four replicates was conducted from June 2002 to March 2003 at the experimental farm of the Nong Lam University, Ho Chi Minh City, Vietnam, to determine effects of different harvesting heights (10, 30 and 50 cm above the ground) and cutting intervals (45, 60, 90 and 285 days) on yield of foliage and tubers, and chemical composition of the foliage. Cassava of the variety KM 94 grown in plots of 5 m${\times}$10 m at a planting distance of 30 cm${\times}$50 cm was hand-harvested according to respective treatments, starting 105 days after planting. Foliage from the control treatment (285 days) and all tubers were only harvested at the final harvest 285 days after planting. Dry matter and crude protein foliage yields increased in all treatments compared to the control. Mean foliage dry matter (DM) and crude protein (CP) yields were 4.57, 3.53, 2.49, and 0.64 tonnes DM $ha^{-1}$ and 939, 684, 495 and 123 kg CP $ha^{-1}$ with 45, 60, 90 and 285 day cutting intervals, respectively. At harvesting heights of 10, 30 and 50 cm the DM yields were 4.27, 3.67 and 2.65 tonnes $ha^{-1}$ and the CP yields were 810, 745 and 564 kg $ha^{-1}$, respectively. The leaf DM proportion was high, ranging from 47 to 65%. The proportion of leaf and petiole increased and the stem decreased with increasing harvesting heights and decreasing cutting intervals. Crude protein content in cassava foliage ranged from 17.7 to 22.6% and was affected by harvesting height and cutting interval. The ADF and NDF contents of foliage varied between 22.6 and 30.2%, and 34.2 and 41.2% of DM, respectively. The fresh tuber yield in the control treatment was 34.5 tonnes $ha^{-1}$. Cutting interval and harvesting height had significant negative effects on tuber yield. The most extreme effect was for the frequent foliage harvesting at 10 cm harvesting height, which reduced the tuber yield by 72%, while the 90 day cutting intervals and 50 cm harvesting height only reduced the yield by 7%. The mean fresh tuber yield decreased by 56, 45 and 27% in total when the foliage was harvested at 45, 60 and 90 day cutting intervals, respectively. It is concluded that the clear effects on quantity and quality of foliage and the effect on tuber yield allow alternative foliage harvesting principles depending on the need of fodder for animals, value of tubers and harvesting cost. An initial foliage harvest 105 days after planting and later harvests with 90 days intervals at 50 cm harvesting height increased the foliage DM and CP yield threefold, but showed only marginal negative effect on tuber yield.

Control of Water Foxtail in the Cultivating Barley and Wheat before Harvesting Rice (벼 수확 전 파종 사료맥류 재배 시 뚝새풀 방제효과)

  • Im, Il-Bin;Im, Bo-Hyeok;Park, Jea-Hyeon;Jang, Jun Hyeong
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.362-367
    • /
    • 2013
  • This study was conducted to develop an efficient control method for water foxtail in the field sowing barley and wheat seeds before rice harvesting. When thifensulfuron-methyl (75%) was applied 0, 5 and 10 days after rice harvesting, little phytotoxicity was observed on both barley and wheat. Percent of water foxtail control with thifensulfuron-methyl (75%) was more than 88% at three different application timing. When butachlor (5%) was applied 5 days before barley and wheat sowing, phytotoxicity on barley and wheat was severe. However, no phytotoxicity was observed on barley and wheat 5 and 10 days after rice harvesting. Percent of water foxtail control with butachlor 0 and 5 days after rice harvesting was 85-89%. However, it dropped to 74-80% when applied 10 days after rice harvesting. In the thifensulfuron-methyl treatment, the dry matter of barley and wheat was 96-108% and 100-108%, respectively when compared with untreated control. While, in the butachlor treatment, the dry matter of barley and wheat was 53-73% and 106%, respectively when compared with untreated control. Therefore, we recommend thifensulfuron-methyl (75%) 0-10 days after rice harvesting or butachlor (5%) 5 days after rice harvesting to provide efficient water foxtail control and safe barley and wheat production.

The Effects of Timber Harvesting on Soil Chemical Ingredients and Stream Water Quality (성숙임목수확벌채가 토양의 화학성분과 계류수질에 미치는 영향)

  • 박재현;우보명;김우룡;안현철;김재수
    • The Korean Journal of Ecology
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2000
  • The effects of clearcutting on soil chemical ingredients and stream water quality have been investigated at a natural deciduous forest catchment within the Seoul National University Research Forest in Mt. Paekun, Chunnam province during the periods of 1993 to 1998. Soil chemical ingredients and stream water qualities were monitored at a 13 ha clearcutting site and a non-treatment site nearby. During the first and second years after harvesting, the levels of total-N, and exchangeable ions (K/sup +/, Na/sup +/, Ca/sup 2+/, Mg/sup 2+/) decreased compared to the values of before harvesting. During the fifth years after harvesting, these levels were significantly higher than those during the first and second years after harvesting. But the chemical characteristics of soil were not changed at all. pH of water in the harvesting area was 6.5 in stream water. Among the nutrients, Cd, Pb, Cu, and phosphate were not found, and the level of BOD reached at the level of the domestic use suitable for drinking. Turbidity, odor, taste, NH/sub 4//sup +/ -N, NO/sub 3//sup -/-N, standard plate count, and coliform were also low enough to be used as the domestic use for drinking by the near villagers. During the first and second years after harvesting, BOD increased to about 1 ppm. For that reason, the harvesting planning should be built in the harvesting area in consideration of the control of water quality in the stream.

  • PDF

Determination of Seeding and Harvesting Time in Snap Bean

  • Lee, Sang-Soon;Lee, Jeong-Dong;Hwang, Young-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.64-67
    • /
    • 2001
  • Snap bean is a new corp in Korea but believed to have a great deal of potentials for both domestic and overseas markets. The present study was performed to obtain the basic information about growth- and quality-related characteristics and to determinate the optimum seeding date and harvesting time for snap bean. Pod yield was significantly affected by seeding date. The highest pod yield was obtained from March 20 for determinate type and April 4 for indeterminate one, respectively, with the range of 13.0-23.7 t/ha. The pod length of indeterminate type was over 13cm, and the pod length was over 5 grams. The pod width for tested varieties was less than 1.0cm. Considering the pod growth characters such as pod length, pod width, and pod weight, the optimum harvesting time for immature pods of snap bean was supposed to be from 15 to 20 days after flowering. The daily yield of snap bean was begun to sharply increase from 15 days after the first flowering and the maximum yield was recorded at 30 days after flowering. For the accumulated yield, nearly 90% of total yield was obtained in 42 days after flowering.

  • PDF

Effect of the Harvest Season on the Yield and Growth of Unripe Fruit and Biennial Flowering of 'Miyagawa' Satsuma Mandarin in Open Field Cultivation (노지재배 풋귤 수확시기가 수량과 과실생육 및 다음해 착화에 미치는 영향)

  • Kang, Seok-Beom;Moon, Young-Eel;Yankg, Kyung-Rok;Joa, Jae-Ho;Lee, Hae-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.314-320
    • /
    • 2019
  • BACKGROUND: As consumption of unripe mandarin increases, its cultivation has increased in open field cultivation areas. Because unripe mandarin must be harvested before ripening and color change, the optimum harvest time must be determined. This study investigated the effect of the harvest season on the yield of unripe fruit and biennial flowering of 'Miyagawa' satsuma mandarin. METHODS AND RESULTS: Two areas of unripe mandarin orchard were selected, and the yield, fruit growth, working time, and flowering of trees the following year were investigated. Fruit was harvested at 40, 60, 80, 100, and 120 days after full bloom and at general ripening. Fruit yield of unripe mandarin increased with later harvest time from 100th to 120th day except normal ripening. The next year, biennial occurred with normal ripening and harvesting, but not at the 120th day after full bloom. At the 40th day (earliest harvest time), summer and autumn shoots were present, but not after the 100th day. The 40th day required the most harvesting time; because the time gradually decreased with later harvest, the harvest time was shortest on the 120th day, and general ripening occurred shortly after the 120th day. CONCLUSION: Harvesting of unripe mandarin 100-120 days after full bloom was ideal to reduce harvesting time, enhance yield, and enable flowering the following year.

Effect of Irradiation Time after Harvesting and Irradiation Dose on its Storability of Potatoes (감자 수확후(收穫後) 방사선(放射線) 조사시기(照射時期) 및 조사선량(照射線量)이 그 저장성(貯藏性)에 미치는 영향(影響))

  • Cho, Han-Ok;Byun, Myung-Woo;Kwon, Joong-Ho;Yang, Ho-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.4
    • /
    • pp.53-59
    • /
    • 1982
  • In order to determine the optimun condition for the long term storage of potatoes by irradiation combined with natural low temperature, the dose range and irradiation time after harvesting of two varieties were investigated. Although optimum dose of potatoes and was different according to the variety 12.5krad seemed optimum untill 15-30 day after harvesting and 15krad was for later than 45 day after harvesting. The sooner the irradiation was efficient after harvesting. Optimum dose irradiated group were better in change of sprouting, rotting, weightloss and shrivelling and was extended the storage period more than four months compared with control at natural low temperature storage room.

  • PDF