기존의 웨이브릿 기반 프랙탈 압축 방법은 전 영역에 대하여 최적의 정의역을 탐색하므로, 부호화 과정에서 많은 탐색시간이 소요되는 단점이 있다. 그래서 본 논문에서는 웨이브릿 변환영역에서 SAS(Self Affine System) 기법을 이용한 웨이브릿 변환 기반 프랙탈 영상 압축 방법을 제안한다. 웨이브릿 변환영역에서 정의역과 치역을 구성하고, 각각의 정의역과 치역에 대해 모든 블록을 탐색하는 것이 아니라, 공간적으로 같은 위치에 있는 블록을 정의역으로 선택한다. 이와 같이 웨이브릿 변환 영역에 정의역 탐색과정이 필요 없는 SAS 기법을 도입하여 부호화 과정에서 곱셈 계산량을 감소시켜 고속 부호화를 가능하게 하였다. 그리고 복호화 과정에서 각 레벨과 서브-트리별로 서로 다른 스케일 인자를 사용하여 압축률과 화질을 조절할 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권8호
/
pp.1423-1443
/
2011
Background compensation plays an important role in detecting and isolating object motion in visual tracking. Here, we propose a Genetic Hough Transform, which combines the Hough Transform and Genetic Algorithm, as a method for eliminating background motion. Our method can handle cases in which the background may contain only a few, if any, feature points. These points can be used to estimate the motion between two successive frames. In addition to dealing with featureless backgrounds, our method can successfully handle motion blur. Experimental comparisons of the results obtained using the proposed method with other methods show that the proposed approach yields a satisfactory estimate of background motion.
본 논문은 Scale Invariant Feature Transform(SIFT) 기술자를 이용한 매칭 방법을 개선하여 고해상도영상에서 보다 많은 매칭쌍(tie points)을 추출함으로써 고해상도영상 자동기하보정의 결과향상을 목적으로 한다. 이를 위해 기준(reference)영상과 대상(sensed)영상의 특징점(interest points)간의 위치관계를 추가적으로 이용하여 매칭쌍을 추출하였다. SIFT 기술자를 이용하여 어핀(affine)변환계수를 추정한 후, 이를 통해 대상영상의 특징점 좌표를 기준영상 좌표체계로 변환하였다. 변환된 대상영상의 특징점과 기준영상의 특징점간의 공간거리(spatial distance)정보를 이용하여 최종적으로 매칭쌍을 추출하였다. 추출된 매칭쌍으로 piecewise linear function을 구성하여 고해상도 영상간 자동기하보정을 수행하였다. 제안한 기법을 통하여, 기존 SIFT 기법에 의해 추출한 결과에 비해 영상 전역에 걸쳐 고르게 분포된 다수의 매칭쌍을 추출할 수 있었다.
기존의 High Efficiency Video Coding(HEVC)기반의 다시점 비디오 부호화 기법은 종속 시점의 픽쳐를 부호화 할 때, disparity compensation prediction(DCP)을 위해 추가적인 참조 영상을 사용하기 때문에 높은 부호화 복잡도를 가지고 있다. 본 논문에서는 MV-HEVC에서 변위 움직임 벡터 탐색 복잡도를 줄이기 위한 빠른 변위 움직임 벡터 탐색 방법을 제안한다. 제안하는 방법은 어파인 변환을 이용한 초기 탐색 지점 결정 방법과 적응적인 탐색 영역 크기 결정 방법을 포함한다. 실험 결과는 제안하는 방법이 부호화 효율의 저하가 거의 없이 변위 움직임 탐색 복잡도를 90.78%까지 줄일 수 있는 것을 보여준다. 또한, 실험 결과는 제안하는 방법이 다른 복잡도 감소 기술들 보다 효과적으로 복잡도를 줄이는 것을 보여준다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3782-3796
/
2020
A three-dimensional (3D) reconstruction is an important research area in computer vision. The ability to detect and match features across multiple views of a scene is a critical initial step. The tracking matrix W obtained from a 3D reconstruction can be applied to structure from motion (SFM) algorithms for 3D modeling. We often fail to generate an acceptable number of features when processing face or medical images because such images typically contain large homogeneous regions with minimal variation in intensity. In this study, we seek to locate sufficient matching points not only in general images but also in face and medical images, where it is difficult to determine the feature points. The algorithm is implemented on an adaptive threshold value, a scale invariant feature transform (SIFT), affine SIFT, speeded up robust features (SURF), and affine SURF. By applying the algorithm to face and general images and studying the geometric errors, we can achieve quasi-dense matching points that satisfy well-functioning geometric constraints. We also demonstrate a 3D reconstruction with a respectable performance by applying a column space fitting algorithm, which is an SFM algorithm.
본 논문에서는 템플릿 변형과 Level-Set 이론을 사용하여 모델과 에지 기반의 객체 추적 방법을 제안한다. 제안된 방법은 배경의 변화, 객체 자체의 모양변화, 객체간의 겹침 등이 있는 경우에도 객체를 추적할 수 있다. 먼저, 객체 추적을 위해 템플릿과 목적 프레임간의 상호 영역 차이(Inter-region distance)와 에지 값으로 구성된 에너지 함수 PDEF(Potential Difference Energy Function)를 새롭게 정의한다. 이 함수는 객체 위치 및 경계 예측과 객체 모양 재결정 단계에서 사용된다. 객체 위치 및 경계 예측 단계에서는 객체의 변화가 어파인(affine) 변형을 따른다는 가정 하에 객체의 대략적인 모양 및 위치를 예측한다. 객체 모양 재결정 단계에서는 퍼텐셜 에너지 지도(Potential energy map)와 수정된 Level-Set 운동 함수를 사용하여 객체의 정확한 형태를 재결정한다. 실험결과에서 제안된 방법은 기존의 방법보다 배경의 변화가 큰경우, 객체 자체의 모양변화가 심한 경우, 객체간의 겹침이 있는 경우 등 다양한 상황이 포함된 동영상에서 정확하게 객체를 추적할 수 있음을 확인할 수 있다.
오늘날 촬영 상황을 조절할 수 있는 환경, 즉 고정된 촬영각이나 일관된 조도 조건에서는 얼굴인식 기술 수준은 신뢰할 수 있을 정도로 높다. 그러나 복잡한 현실에서의 얼굴 인식은 여전히 어려운 과제이다. SIFT 알고리즘은 촬영각의 변화가 미미할 때에 한하여, 크기와 회전 변화에 무관하게 우수한 성능을 보여주고 있다. 본 논문에서는 다양하게 촬영각이 변하는 환경에서도 얼굴 인식을 할 수 있는 어파인 불변 지역 서술자를 탐지하는 ASIFT(Affine SIFT)라는 알고리즘을 적용하였다. SIFT 알고리즘을 확장하여 만든 ASIFT 알고리즘은 촬영각 변화에 취약한 단점을 극복하였다. 제안하는 방법에서 ASIFT 알고리즘은 표본 이미지에, SIFT 알고리즘은 검증 이미지에 적용하였다. ASIFT 방법은 어파인 변환을 사용하여 다양한 시각에 따른 영상을 생성할 수 있기 때문에 ASIFT 알고리즘은 저장 영상과 실험 영상의 시각 차이에 따른 문제를 해결할 수 있었다. 실험결과 FERET 데이터를 사용했을 때 제안한 방법은 촬영각의 변화가 큰 경우에 기존의 시프트 알고리즘보다도 높은 인식률을 보여주었다.
고해상도 위성영상은 기상관측, 지형관측, 원격탐사, 군사시설감시, 문화재보호 등 많은 분야에서 이용된다. 위성영상은 동일한 위성영상 시스템에서 획득한 영상이라 할지라도 하드웨어(광학장치, 위성의 운용고도, 영상 센서 등)의 조건에 따라서 해상도가 저하된 영상들이 발생한다. 따라서 위성이 발사된 이후에는 이러한 해상도가 저하된 영상들의 해상도 향상을 위해서 영상시스템의 하드웨어를 변경하는 것은 불가능하므로 위성영상 자체를 이용하여 해상도를 향상시키는 방법이 필요하다. 본 논문에서는 이러한 저해상도 위성영상을 이용하여 해상도를 향상시키는 방법으로 SR(Super Resolution) 알고리즘을 사용하였다. SR 알고리즘은 다수의 저해상도 영상들의 정합을 통해 영상의 해상도를 향상시키는 알고리즘이다. 하지만 위성영상에서는 동일 지역에 대한 여러 장의 영상을 획득하기 어렵다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 어파인 변환(Affine Transform)및 투영 변환(Projection Transform)을 적용 후 영상에 대한 기하학적 변화를 보정하여 SR 알고리즘을 수행하였다. 그 결과 SR 알고리즘만 적용한 영상보다 어파인 변환과 투영 변환을 거친 후 SR 알고리즘을 적용한 영상에서 해상도가 확실하게 더 증가되는 것을 확인하였다.
Purpose: To apply a computer assisted navigation system to orthognathic surgery, a simple and efficient measuring algorithm calculation based on affine transformation was designed. A method of improving accuracy and reducing errors in orthognathic surgery by use of an optical tracking camera was studied. Methods: A total of 5 points on one surgical splint were measured and tracked by the Polaris $Vicra^{(R)}$ (Northern Digital Inc Co., Ontario, Canada) optical tracking system in two cases. The first case was to apply the transformation matrix at pre- and postoperative situations, and the second case was to apply an affine transformation only after the postoperative situation. In each situation, the predictive measuring value was changed to the final measuring value via an affine transformation algorithm and the expected coordinates calculated from the model were compared with those of the patient in the operation room. Results: The mean measuring error was $1.027{\pm}0.587$ using the affine transformation at pre- and postoperative situations and the average value after the postoperative situation was $0.928{\pm}0.549$. The farther a coordinate region was from the reference coordinates which constitutes the transform matrixes, the bigger the measuring error was found which was calculated from an affine transformation algorithm. Conclusion: Most difference errors were brought from mainly measuring process and lack of reproducibility, the affine transformation algorithm formula from postoperative measuring values by using of optic tracking system between those of model surgery and those of patient surgery can be selected as minimizing the difference error. To reduce coordinate calculation errors, minimum transformation matrices must be used and reference points which determine an affine transformation must be close to the area where coordinates are measured and calculated, as well as the reference points need to be scattered.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.