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Abstract 
 

Background compensation plays an important role in detecting and isolating object motion in 

visual tracking. Here, we propose a Genetic Hough Transform, which combines the Hough 

Transform and Genetic Algorithm, as a method for eliminating background motion. Our 

method can handle cases in which the background may contain only a few, if any, feature 

points. These points can be used to estimate the motion between two successive frames. In 

addition to dealing with featureless backgrounds, our method can successfully handle motion 

blur. Experimental comparisons of the results obtained using the proposed method with other 

methods show that the proposed approach yields a satisfactory estimate of background motion. 
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1. Introduction 

Motion based tracking via active cameras is associated with several difficulties, including 

the necessity of compensation for background motion (also known as global motion) and 

detection of features of object motion. Background motion estimation can also be used as the 

foundation for powerful video processing and coding. However, background compensation 

involves a heavy computational burden, for which there are no optimal solutions. 

Therefore, several alternative approaches have been proposed to compensate for 

background motion. In [1], the relationships between pixels representing the same 3-D point in 

images captured from different camera orientations are used to eliminate background motion. 

For this approach to function correctly and accurately, knowledge of the values of the pan and 

tilt angles of the camera are necessary for each captured image. However, a disadvantage of 

this approach is the difficulty of timming synchronization, which is required for obtaining pan 

and tilt angles and capturing images. In [2], lines, polygons or other background line structures 

are matched to compensate for background motion. Background motion is represented by an 

affine transformation in [3]. Parameters of the affine motion are estimated using the Least 

Median of Squares (LMedS) method. In this method, a number of feature points in the current 

frame and their corresponding feature points in the remaining frame are selected, and the 

resulting pixels are selected from the moving objects' regions and considered to be outliers of 

the affine parameter estimator. However, choosing feature points in this manner is very 

sensitive due to motion blur, as feature points can remain outside the background as well as 

outside the relevant region of the moving object of interest, potentially resulting in inaccurate 

parameters. In [4], M-estimator like techniques in a multi-resolution framework are used as a 

parametric motion model estimation algorithm. 

In the present paper, we propose a Genetic Hough Transform (GHT) based method to 

estimate the background motion between two successive images. Previously, the Hough 

Transform (HT) [5, 6] has been widely applied in motion analysis. Importantly, the advantages 

of HT involve its robustness to image noise and its ability to detect pattern discontinuities. In 

[7], a randomized HT is proposed as a means to analyze translational and rotational motions. 

This HT method randomly chooses pairs of edge pixels from two successive images and it 

computes the translation between them. Likewise, [8] describes a standard HT applied for 

achieving fast optimization of linear velocity motion. In [9], HT with projection (HTP), which 

was designed for dealing with 3-D data, is proposed as a method for estimating the velocities 

of  moving objects. Experimental data in [9] show that utilization of Standard HT might lead to 

increased noise sensitivity compared with the proposed HTP method. Moreover, the 

disadvantages associated with Standard HT requiring significant computational power and 

large storage. 

The present paper describes a Genetic Algorithm (GA) combined with HT. GAs [10] have 

been widely applied in motion estimation. GAs are stochastic search methods based on the 

principles of natural selection and genetics, and are used to identify approximate solutions of 

optimization and search problems. A GA in a continuous space (GACS) was proposed 

previously for matching global motion [11]. Contrary to conventional GAs, the method 

presented in this study utilizes an actual floating point instead of a series of bits to represent 

chromosomes. Indeed, in the present study, the chromosomes are formed by the combination 

of six motion parameters according to the affine model, the experimental results of which 

show that the GACS method outperforms hierarchical model-based motion estimation 
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methods [12]. A multi-resolution GA was previously proposed to solve image-related 

optimization problems including image segmentation, stereo vision, and motion estimation 

[13]. With respect to the motion estimation problem, these studies demonstrated that the 

velocities of moving objects can be efficiently estimated even if the objects are in areas that do 

not contain sufficicent intensity variation. Moreover, using these approaches, the resulting 

velocity fields can describe the shapes and numbers of moving objects in a given scene. 

Nevertheless, the processing time required for such GA approaches remains high. 

The GHT based method described in the present paper represents part of a continuum of 

research on developing a novel background compensation method. Our previously published 

work, which is based on multi-resolution HT [14], has been described in [15] with the goal of 

achieving high accuracy. In the present study, we combined GA with HT, because GA is 

extremely effective for solving combinatorial optimization problems. In this method, the first 

of any two successive gray images is separated into a number of binary images. Then, vertical 

and horizontal histograms of binary images separated from given gray images are matched to 

those of binary images separated from preceding gray images, and possible matches 

accumulate in a Hough space. During this accumulation process, every time the peak of Hough 

space reaches a threshold, the corresponding parameters at the cell of that peak are defined as 

new individuals in the GA population. In this manner, new individuals are accumulated and 

created until the GA has a sufficient number of individuals in the population. Importantly, our 

Hough based method, which utilizes automatic initialization of a GA population that has an 

appropriate abundance of guesses, can efficiently reduce execution time. Moreover, because 

this method involves selecting good candidates for inclusion in the GA population, the 

accuracy of the affine motion estimator is also increased. In addition to the automatic 

population initialization that was used to reduce computation time, fitness prediction (FP) is 

alternately used with fitness evaluation (FE) in the GA to simplify the calculation of the fitness 

value. Likewise, FP improves computational speed, while FE attempts to correct the 

inaccurate fitness values predicted by the FP. 

The content of this paper is organized as follows. In section 2, the existing background 

compensation method based on multi-resolution HT (MHT) is reviewed. Section 3 describes 

the proposed background compensation method using the GHT. Section 4 discusses the 

computational complexity of the proposed method. Section 5 presents experimental results. 

Lastly, the conclusions of the paper are described in section 6. 

2. Previous Work: Background Compensation using MHT 

Motion features of a moving object can be detected using the image difference technique. This 

technique is widely used for detecting moving objects [1]. The difference image, or 

inter-frame difference (IFD), is calculated by performing pixel-by-pixel subtraction between 

two successive images. When the camera rotates and moves, the background of the captured 

images is altered. Thus, the background motion must be compensated for in order to detect 

motion features using IFD. 

This section reviews the MHT method for estimating background motion between two 

successive images. Unlike [3], this method does not use pairs of feature points and their 

corresponding points to determine the parameters of transformation, thereby alleviating the 

difficulties of selecting feature points and their corresponding points in successive images. Fig. 

1 shows two difficult cases of selecting corresponding feature points in two successive frames. 

These frames were captured when the camera was rotating and changing zoom values. In Fig. 

1(a) and Fig. 1(b), the difficulty of selecting feature points and their corresponding points for 
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estimating parameters in some parts of the background (i.e., the ceiling and the wall) are 

apparent because the gray intensities of the pixels in those parts are similar. In the remaining 

case, shown in Fig. 1(c) and Fig. 1(d), the two frames were affected by camera motion blur. 

Similar to the first case, Fig. 1(a) and Fig. 1(b), it has low ability of choosing the correct 

feature and corresponding points in both frames. 

 

   
 (a), (b) The intensities of pixels in the ceiling and the wall are similar. 

   
 (c), (d) Images are affected by motion blur. 

Fig. 1. Difficult cases for selecting feature points and corresponding points in successive frames. 
  

The MHT based background compensation algorithm is summarized in a block diagram 

shown in Fig. 2. First, binary images are created from two successive gray images that are 

used to estimate background motion. Next, the binary vertical and horizontal histograms of the 

created binary images are matched, and all possible best matches accumulate in a Hough space. 

For the purposes of this section, we assume a multi-resolution Hough space. Finally, the affine 

motion parameters are estimated using the cell with the greatest accumulating value in the 

multi-resolution Hough space. We compensate for background motion by using these affine 

motion parameters. 
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Fig. 2. Diagram of the MHT based background compensation method. 

 

Let I(t1) and I(t) be two images at time index t1 (the previous image) and t (the current 

image), respectively. Given the aforementioned assumptions, the non-proportional scaling 

transformation followed by a translation is geometric. This 2-D transformation is used to 

transform I(t1) to I(t), where each point (x, y)
T
 in I(t1) is mapped to a corresponding point 

(x, y)
T
  in I(t) using the geometric transformation: 

     ,
T T

x y x y   A b  (1) 

where A = (a11  0; 0  a22); b = (b1  b2)
T
; a11, a22 > 0. It is noted that camera motion might not 

necessarily contain rotation and shear motion; therefore, only scale and translation motion are 

considered in this paper. Fig. 3 shows the resulting transformation mapping the point x = (x, 

y)
T
  in I(t1) to the point x = (x, y)

T
 in I(t). 

  

 

Fig. 3. Motion represented by a scaling transformation followed by a translation. 

 

The IFD applied background compensation between two successive images I(t1) and I(t) 

is defined by IFD(t, x) =  I(t, x)  I(t1, x) |. At first, the previous gray scale image I(t1) is 

separated into N binary images, I
l
(t1, x) where 0 ≤ l ≤ N  1. In the original gray image I(t1), 

every pixel with an intensity within the range [255l / N; 255(l + 1) / N] becomes a white pixel 

in the corresponding binary image I
l
(t1); otherwise, it becomes a black pixel. Similarly, the 

current gray scale image I(t) is also separated into N binary images, I
l
(t, x) where 0 ≤ l ≤ N  

1. Next, we match the binary vertical and horizontal histograms of N×2 binary images. Let 
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H
V
(I) be the vertical histogram of the image I, giving 

  ( ) ( ) : 0,1,..., 1 ,V V

jH I h I j W    (2) 

where W is the number of columns; ( )V

jh I  is the binary histogram or the number of white 

pixels in column j. Similarly, H
H
(I) is defined as the horizontal histogram. All points having 

the same x should have the same x = a11x + b1 after mapping; and all points having the same y 

should have the same y = a22y + b2. Indeed, column j is mapped onto column j, and row i is 

mapped onto row i, where j = a11j + b1 and i = a22i + b2. Likewise, when column j in I
l
(t, x) 

is obtained from the mapping of column j in I
l
(t1, x), the number of white pixels in column j 

is approximately equal to that in column j: 

 ( 1) ( ) .V l V l

j jh I t h I t                                                     
(3) 

A threshold T
V
 is used to measure the similarity between ( 1)V l

jh I t     and ( )V l

jh I t
   , 

where ( 1) 0V l

jh I t     implies column j does not correspond to any column j: 

 
( 1) ( )

.
( 1)

V l V l

j j V

V l

j

h I t h I t
T

h I t


      

  

 



 (4) 

Similarly, a threshold T
H
 is used to measure the similarity between ( 1)H l

ih I t     and 

( )H l

ih I t
   . Fig. 4 shows an example of two gray images and their corresponding binary 

images. In this case, each gray image is separated into N = 4 binary images. Indeed, the white 

pixels in Fig. 4(c) and 4(g) represent the pixels in gray images that have values within [0, 63], 

and the white pixels in Fig. 4(d) and 4(h) represent the gray values within [64, 127], and the 

same goes for Fig. 4(e), 4(f), 4(i) and 4(j). In all of the cases described above, each binary 

image is illustrated with its vertical histogram (on the down side) and horizontal histogram (on 

the right side). 

 

  
(a), (b) Gray images of Fig. 1(c) and 1(d) 

    
(c), (d), (e), (f) Binary images of (a) and their corresponding vertical and horizontal histograms 
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(g), (h), (i), (j) Binary images of (b) and their corresponding vertical and horizontal histograms 

Fig. 4. An example of two gray images and their corresponding binary images. 

 

To determine the values of a11 and b1, vertical histograms of the binary previous and current 

images are used. For each value of l, where 0 ≤ l ≤ N  1, all possible pairs of (j, j) that satisfy 

(4) are searched. Similarly, the values of a22 and b2 are determined based on horizontal 

histograms of the two binary images. Equations j = a11j + b1 and i = a22i + b2 show that the 

relationships between j, i and j, iare linear. Therefore, the affine motion parameters can be 

determined using HT. Importantly, while general HT has the disadvantages of requiring high 

computation power and large memory resources, MHT [14] can be applied to reduce 

computation time and storage requirements based on multi-resolution images and accumulator 

arrays. Logarithmic range reduction is used for achieving faster convergence. To determine a11 

and b1, all points (j, j) are transformed using the equation expressed in polar coordinates  = 

jcos + jsin to obtain  as  changes successively in the parameter space. Having the values 

(,), the HT algorithm then looks for accumulator cells into which the parameters fall. 

Likewise, the HT then increases the values of those cells. The most dominant global motion, 

that we have to estimate, is represented by the highest value in the parameter space. If we let 

the values of  and  at the peak cell be V
 and V

, the result is a11 = cosV
 /sinV

 and and b1 = 

V
 /sinV

. Similarly, a22 = cosH
 /sinH

 and and b2 = H
 /sinH

 for cases where H
 and H

 are 

the  and  of the peak cell in the horizontal Hough space. We can reduce the search range of 

 by limiting the scale factor changes. In this analysis, scale parameters a11 and a22 must be 

greater than zero, and should be limited by the range [amin, amax] that contains 1 (1 implies no 

scale). The range of  is defined as follows: 

    arctan 1/ arctan 1/min maxa a    . (5) 

In the MHT algorithm, if the number of iterations L is large, then the computation time 

required for the HT is reduced. However, the multi-resolution based algorithm is unstable 

when L is increased, because the smallest image used in the first iteration lacks distinct 

features that are required for detecting the transformation parameters. This situation implies 

that the smallest images resulting from L down-sampling reductions of previous and current 

images are too similar to use to determine the parameters of transformation. In this method, L 

was set to 2. 

3. Background Compensation using Genetic Hough Transform 

This section describes the Genetic HT based method for background compensation. This work 

is intended to improve the accuracy and processing time of the MHT based method that was 

presented in the previous section. The HT is robust with respect to image noise; however, the 

discretization of a low resolution Hough space might lead to large errors in the final results. 
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Here, GA is used to evolve and reduce the error coming from results of the HT. 

Our method is summarized as follows: 1) two successive gray images are both separated 

into a number of binary images, and vertical and horizontal histograms of the separated binary 

images are matched in the same way as shown in the two first steps of the algorithm in section 

2, where 2) possible matches accumulate in a Hough space to initialize the GA population, and 

3) affine motion parameters are determined according to the best individuals in the most recent 

GA population when the GA iterations are finished. Fig. 5 presents a block diagram of the 

proposed method. This method differs from MHT based methods in its second and third steps, 

because it replaces the accumulation of all match pairs, the identification of the final peak 

based on the stepwise accumulation of a number of match pairs, and the choice of the peak 

(not the final peak) if the peak value satisfies a threshold. This method saves time when it does 

not scan through the Hough space. Moreover, the GA selects candidate peaks as good guesses 

for inclusion in its population. Next, this stochastic search technique, based on the principles 

of natural selection and genetics, is used to identify an optimal solution. The second and third 

steps of the GHT based method are described below. 
 

 

Fig. 5. Diagram of the GHT based background compensation method. 

3.1 Using HT to initialize the GA population 

To minimize computational requirements, the HT based method used to initialize the GA 

population proceeds as follows. A new match pair, or a new feature point, is randomly selected 

for voting. After making a vote, the current peak is tested to determine whether or not it 

exceeds the threshold Tv. The test of the peak requires a single comparison to the threshold per 

accumulator cell update. When a likely global motion is detected, the supporting feature points 

retract their votes. This step is similar to emptying the Hough space. However, the supporting 

points are not removed from the set of all possible points, and the process continues with other 

random selections. The threshold Tv is set by assuming that all match pairs (feature points) are 

caused by noise, which is the worst-case assumption. However, this assumption is also valid if 

a great deal of motion is present in the two successive images because there a fraction of 

feature points still belong to the most likely global motion. This threshold is manually defined 
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in this paper. 

The HT algorithm has several interesting properties. Candidate or likely global motion is 

detected as soon as the content of the Hough space allows a decision to be made. Furthermore, 

it can be interrupted and still yield useful results. A full HT, which requires significant 

amounts of computational time, is not performed in such cases. Indeed, depending on the data, 

only a small fraction of match pairs are allowed to vote, the rest being used to support the next 

selection to initialize the GA population. If constraints are given, e.g., the minimum likely 

global motion, then a stopping rule can be tested before selecting a new match pair for voting. 

3.2 Using a GA to find an optimal solution 

A chromosome in a GA can be identified using the array formed by parameters of the motion 

model. In affine motion models (1), in this paper the chromosome is formed by combining 

four motion parameters. The chromosomes representing four motion parameters a11, a22, b1 

and b2 should be actual floating point vectors instead of a series of bits. Although the series of 

bits are very widely used, they have shortcomings in the linkage between different solution 

parameters and quantization [11]. Moreover, the chromosomes formed by the concatenation of 

the four parameters are simpler but no less robust than those formed by the concatenation of 

six parameters. Thus, they might lead the GA to the convergence point faster. 

In our GA model, first, a population with a given number of chromosomes is created by the 

HT described in the previous section. The initialization step is not critical, provided that the 

initial population narrows or spans the range of variable settings. If the explicit information of 

the system is provided in advance, then this information can be included in the initial 

population (e.g., our method creates good guesses for the population). In the second step of the 

GA, the fitness of each individual is evaluated. The goal of the fitness evaluation is to 

numerically encode the performances of chromosomes. For motion compensation applications, 

the fitness function is defined as: 

   11 22 1 2

1
( ) , ( ) , ( ) , ( )i i i i i

E j j j j jf C SAD a a b b


  

  
1

( , ) ( , 1) ,I t Aff I t


  
x

x x  (6) 

where  11 22 1 2( ) , ( ) , ( ) , ( )i i i i i

j j j j jC a a b b  is chromosome j (j = 1, 2..., Np, where Np is the 

number of individuals in the population) at the ith generation; SAD represents the sum of 

absolute differences; I(x, t) and I(x, t1) are the pixel values of the point x = (x, y) in the frame 

t and t1, respectively; Aff is the affine transformation function that utilizes 

 11 22 1 2( ) , ( ) , ( ) , ( )i i i i

j j j ja a b b ;  is the number of common points in images I(t) and I(t1). The 

third step is the natural selection step, which is implicitly coupled with the replacement step. In 

fact, when a new individual enters a population, another individual must leave. The process of 

going from the current population to the next population constitutes a generation of the GA. 

The fourth step is applying crossover and mutation. Two chromosomes (parents) from the 

current population are randomly selected to be mated. The chromosomes that are not selected 

to mate pass on unchanged to the next generation. One-point, n-point, uniform crossover, or 

multiple crossovers per couple [17] can be used for recombination. Likewise, mutations result 

int small changes to a single gene in order to maintain a way of exploring the search space. 

Gene-wise mutation is primarily used at this stage. At this point, all of the above steps are then 



1432   Nguyen et al.: Scaling-Translation Parameter Estimation using Genetic Hough Transform for Background Compensation 

repeated for each generation until a termination condition is met. 

In order to speed up the process of the GA search, we propose a method of alternating 

fitness evaluation (FE) and fitness prediction (FP). There are a number of methods intended to 

reduce computational complexity such as hybridizing [18], compacting GA [19], predicting 

[17, 20], inheriting [21], imitating [22] or partially evaluating fitness [23]. Although these GA 

approaches can yield optimal solutions, they are still imperfected because high accuracy and 

fast computation cannot be obtained at once. The user should have some knowledge about the 

nonlinearities of real-world applications in order to define trade-offs between accuracy and 

computation speed. For instance, a method of fitness prediction is provided in [17] to reduce 

the execution time of GA in optimizing switched reluctance motor parameters. The proposed 

method can find an optimum solution faster than conventional methods, while it yields 

acceptable results in terms of accuracy. 

In this paper, however, we focus only on a simple method that alternately employs FE and 

FP. FE is not completely replaced by FP in all generations, but only in a few. FP is simpler 

than FE in terms of computation, and thus it improves computation speed, whereas FE 

attempts to correct the inexact fitness values predicted by FP. The fitness predicted by FP may 

be exactly equal, or approximately equal, to the fitness evaluated by FE. The predicted fitness 

of chromosome j at the ith generation is defined as: 

      1 1 ,i i i

P j I I II IIf C w f C w f C    (7) 

where  1i

If C 
 and  1i

IIf C 
 are the fitness values of the two individuals who are most 

similar to individual 
i

jC  of the previous generation. These fitness values can be estimated by 

FE or FP. The wI and wII are the corresponding weights of the two most similar chromosomes 

in the (i1)th generation. The weight wk is calculated by using the similarity function 

 1,i i

j ks C C 
 between individual 

i

jC  and N individuals 
1i

kC 
 (k = 1, 2..., N) from the most 

recent generation [17]. The similarity function is measured using the Euclidean distance, and 

the weight is as follows: 

 
 

 

1

1

1

,
.

,

i i

j k

k N
i i

j j

j

s C C
w

s C C












 (8) 

The FP might negatively affect the performance of the GA methods. Therefore, FE is 

manipulated to improve performance. Fig. 6 shows the fitness values when applying GA 

based background compensation, with the alternation of two FEs and one FP, to two 

successive images in the Flower Garden sequence, as is shown in Fig. 8(a). Ten generations 

were made in this case. In Fig. 6, two FEs are performed on the first run, and one FP is then 

executed; two FEs then continue the generation, and so on. FP may degrade the next 

generation because it sometimes does not yield exact fitness values. This leads us to define 

three rules as follows: 

 Rule 1: The fitness calculation of the first generation must be a FE. This rule makes the 

basis for the later FP. 

 Rule 2: The fitness calculation of the last generation should be a FE. If FP is performed on 

the last generation, then it may degrade the final result. Therefore, FE is utilized in order to 

ensure the best result. 
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 Rule 3: The more FP is used, the greater the obtained error, and less time is consumed. 

 

 

Fig. 6. Fitness values obtained by altering two FEs and one FP. 

 

Following rule 3, a comparison of the results obtained from alternating the number of FEs 

(nfe) and the number of FPs (nfp) is shown in Fig. 7, where nfe, nfp  [1...5]. The result obtained 

in this figure is also from the Flower Garden sequence. As we see in Fig. 7(a), the case (nfe = 5, 

nfp = 1) yields the best error (lowest fitness value). Conversely, the worst error is obtained in 

the case (nfe = 1, nfp = 5). However, the best error case takes the longest time (1237 ms), while 

265 ms is required for the worst error case (Fig. 7(b)). Processing time was calculated using 

parameter sets that will be given later in the experimental results section. 

 

    

 (a) (b) 

Fig. 7. Average error (a) and time results (b) obtained from various alternations of FE and FP. 
 

At this point, a definition of the trade-off between accuracy and speed (i.e., the number of 

FEs and the number of FPs) is required. Based on experiments in which the number of 
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generations was set to 10, we chose nfe = 2, nfp = 1 as the best trade-off for the proposed GA 

model. This trade-off can be used for any data set and for any application. 

4. Computational Complexity of the GHT 

The MHT was compared with the SHT and the Adaptive HT (AHT) [16] in [14]. The MHT 

outperforms the SHT and AHT with respect to computational complexity. We do not consider 

the memory requirements of these algorithms because requirements are continually addressed 

by advances in technology. Thus, the consideration of computational cost outweighs concern 

for memory savings [14]. The computational complexity of MHT is determined by 
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where 
M

sizea  is the size of the accumulator array; 
M

pn  is the total number of feature points 

(match pairs);  is the reduction factor; and 
M

in  is the number of iterations required for MHT. 

In section 2, the existing algorithm stops at the number of iterations 2M

iL n  ; thus, the 

complexity in (9) becomes: 
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The computational complexity of the HT used to create the GA population is 

 ,G G G

size pC a n  (11) 

where 
G

sizea  is the accumulator array size and 
G

pn  is a small number of feature points in the HT. 

In the accumulation process, every time the peak reaches Tv, there are a specific number of 

feature points 
G M

p pn n . Certainly, the vote threshold Tv must be smaller than the threshold 

used in the SHT or MHT. From (10) and (11), we have 
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Assuming 
M G

size sizea a  and having  > 0, we simplify (10) to: 
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In MHT, all feature points are found by scanning all possible match pairs in the binary 

histograms; therefore, the complexity of finding all points is: 

 ,
p

M

n size sizeC I w  (14) 

where Isize is the width (in case of vertical histograms) or height (in case of horizontal 
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histograms) of the image; and wsize is the size of the window where the neighborhoods of the 

estimated values are searched. The Hough Transform used to create the GA population has a 

complexity of randomly finding a number of feature points: 

 ,
p

G

n size sizeC I w   (15) 

where Isize << Isize and wsize ≤ wsize. Therefore, ,
p p

G M

n nC C  and from (13), we have: 

 .G MC C  (16) 

In addition, in order to obtain a smaller computational complexity of the proposed GHT based 

method as compared to the multi-resolution based method, a condition should be given: 

 1,
M

G GA

p

C

N C C



 (17) 

where Np is the total number of individuals in the GA population; and C
GA

 is the computational 

complexity of the GA process. The experimental results show that the proposed GHT 

outperforms the MHT based method. Moreover, (16) and (17) are satisfied. 

5. Experimental Results 

Four image sequences were used in the experiments: Flower Garden, OSU-2, Table Tennis 

(these three sequences are available at: http://sampl.ece.ohio-state.edu/data/motion/), and 

Tsukuba (http://vision.middlebury.edu/stereo/data/scenes2001/). The Flower Garden 

sequence was used to test the estimation of small motion changes, while the Tsukuba sequence 

was utilized for large motion changes. The Table Tennis sequence was used to test scaling, 

while OSU-2 contained small and large motion changes during which the camera was panned 

and tilted. We extracted two sample frames (frame #0-#1 of Flower Garden, #10-#11 of 

OSU-2, #30-#31 of Table Tennis and #0-#1 of Tsukuba) from each image sequence for the 

first test scenario, which was a comparison between the proposed method and other GA 

methods, as well as other non-GA methods. The second test scenario used the whole image 

sequence to compare the proposed method with other non-GA methods. Fig. 8 shows the 

sample frames of the test sequences. 

 

    
 (a) (b) (c) (d) 

Fig. 8. Test images. (a) Frame #0 of Flower Garden (resolution of 352×240); (b) frame #10 of OSU-2 

(320×240); (c) frame #30 of Table Tennis (352×240); (d) frame #0 of Tsukuba (384×288). 

 

The PC used in this paper was an AMD Athlon 64 X2 Dual Core Processor 3800+ 2.00 GHz 

with 2 GB RAM. Parameters and operators used in the GA based method of the first scenario 

are presented in Table 1. The parameters of GA methods include population size Np, crossover 
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rate pc, mutation rate pm and number of generations ngen. As described in section 3.2, nfe = 2 and 

nfp = 1 were applied when ngen = 10 was used. The number of iterations for the whole GA 

process (niter) was set to 100. The scale range was defined as 10%, and the translation range 

was [30; 30]. Table 2 shows the results of error and time comparisons of the proposed 

method, the classical GA, and the GA proposed in [11] and [17]. While the proposed method 

and the classical GA used uniform crossover and gene-wise mutation, [11] is based on a 

random variable uniformly distributed on a unit interval and a Gaussian random variable to 

take form the crossover and mutation. Conversely, crossover in [17] involves multiple 

crossovers per couple (MCPCP). In this type of crossover, FE is replaced by FP after 

childbirth. Two parents are mated and replaced by the two individuals with the highest 

predicted values generated from C crossovers. The proposed GHT yields the best ebest and e  

in most cases. In addition, the time required for the proposed GHT is lower than those required 

by the other three methods. The reasons why the proposed model in [17] has the highest error 

and time are: 1) selecting the two children with the highest predicted values might spoil the 

replacement of the two parents because FP itself is not perfectly accurate, and 2) only the latest 

generation is used to predict offspring fitness. Because the search range is limited using the HT, 

the GHT method can reduce the outliers that affect average error. 

 
Table 1. Parameters of the proposed method and other GA models 

 Proposed 

method 

Classical 

GA 
GA Moscheni [11] 

GA Mutoh 

[17] 

Np 50 

Selection Tournament 

Crossover Uniform Uniform Using a  random variable MCPCP 

pc 0.5 

Mutation Gene-wise Gene-wise Using a Gaussian random variable Gene-wise 

pm 0.05 

ngen 10 

niter 100 

 

Table 2. Error and time comparison results of the proposed method and other GA models (in case of 

two successive images) 

 Flower Garden 

(#0-#1) 

OSU-2 

(#10-#11) 

Table Tennis 

(#30-#31)  

Tsukuba 

(#0-#1) 

Proposed 

method 

ebest 7.534 1.897 4.208 5.577 

e  8.43 2.094 5.318 5.926 

t (ms) 951.92 879.29 993.71 1046.05 

Classical 

GA 

ebest 7.534 1.901 4.22 5.469 

e  9.49 2.446 5.323 5.9 

t (ms) 1289.94 1165.63 1330.72 1506.99 

GA 

Moscheni 

[11] 

ebest 7.533 1.895 4.143 5.447 

e  9.683 2.36 5.382 5.998 

t (ms) 1283.56 1151.28 1347.08 1504.57 

GA Mutoh 

[17] 

ebest 7.647 1.973 4.416 5.504 

e  12.848 3.754 6.241 7.216 

t (ms) 1308.77 1199.65 1284.65 1438.96 

 

In addition, because the proposed method is based on the HT, its Hough-related parameters 
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were the same as those in the MHT based method [15]: the number of binary images N was 32, 

the tolerance value T was 0.1, the scale range was [0.9, 1.1] (  [48.04
o
, 42.30

o
]), and the 

resolution was  =  = 0.0003. Moreover, for the MHT, the number of iterations was 2, and 

the reduction factor  = 2,  = 1; and for the proposed GHT, the vote threshold Tv was 10. 

Table 3 shows the error and processing time comparison of the proposed method and other 

non-GA methods for two successive images. In the RANSAC algorithm [24], the performance 

depends on the number of iterations. In our study, the number of iterations was 1000. The 

proposed GHT method outperforms other methods in terms of accuracy and processing time. 
 

Table 3. Error and time comparison of the proposed method and other methods (in case of two 

successive images) 

 Flower Garden 

(#0-#1) 

OSU-2 

(#10-#11) 

Table Tennis 

(#30-#31)  

Tsukuba 

(#0-#1) 

Proposed 

method 

e 7.534 1.897 4.208 5.577 

t 963 887 982 1031 

RANSAC [24] 
e 10.878 4.061 7.507 6.71 

t 15531 5140 12500 7656 

MHT based 

method [15] 

e 10.261 2.426 5.939 6.63 

t  1828 1110 1078 1453 

 

Fig. 9 shows the errors of four pairs of images. Fewer black pixels in results indicate 

smaller errors. The error, calculated using (6), was measured by intensity per common pixels. 

The results of the proposed method and other three GA methods were very similar in the 

intuitive view, because their errors had only small differences. Fig. 10 presents an average 

error and processing time comparison between the proposed GHT and other methods for two 

successive images. Along with the classical GA and GA Moscheni [11], GHT was the best 

method in terms of accuracy.  

 

    

    
(a) Pairs of input successive images. First row: the previous images (#0, #10, #30, #0); second row: the 

current images (#1, #11, #31, #1) of the corresponding sequences 
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(b) Results of the proposed method 

 

(c) Results of the classical GA based method 

 

(d) Results of GA Moscheni [11] 

 

(e) Results of GA Mutoh [17] 

 

(f) Results of RANSAC [24] based method 

 

(g) Results of MHT [15] based method 

Fig. 9. Results of background compensation methods for four image pairs: Flower Garden (#0-#1), 

OSU-2 (#10-#11), Table Tennis (#30-#31) and Tsukuba (#0-#1). 
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Fig. 10. Comparison of average error and processing time for two successive images. 

 

In the second test scenario, four image sequences were used to compare the proposed 

method with RANSAC and the MHT based method. The results of error and time comparisons 

of these methods are presented in Table 4 and Fig. 11. One hundred frames were used in the 

Flower Garden image sequence, 100 frames were used in the OSU-2 sequence, 50 frames were 

used in the Table Tennis sequence, and 8 frames were used in the Tsukuba sequence. The GHT 

method outperforms RANSAC and MHT based methods in terms of both accuracy and 

processing time. Additionally, the robustness of our method was evaluated in terms of critical 

situations, namely, featureless background and motion blur. Three sample image results are 

shown in Fig. 12 to illustrate for the critical situations. In these cases, it is difficult to select 

feature points in the three input images because of the dark region shown in Fig. 12(a) and the 

mirror shown in Fig. 12(b). In Fig. 12(c), there are no feature points on the wall and table; 

moreover, motion blur occurs around the white ball and moving hands. Table 5 presents the 

error comparison to featureless background and blurring effect. In this table, the average errors 

of all experimental images are categorized into two types: all critical situations considered, 

and no critical situation considered. Our method can handle critical cases as well as no critical 

cases, and the increase in error between these cases was small. 

 

Table 4. Error and time comparison of the proposed method and other methods (for the whole image 

sequences) 

 Flower Garden  

(100 frames) 

OSU-2 

(100 frames)  

Table Tennis 

(50 frames) 

Tsukuba  

(8 frames) 

Proposed 

method 

e  7.629 3.824 3.979 6.011 
t  906.586 872.939 1110.245 1237.286 

RANSAC 

[24] 

e  17.209 6.479 8.205 8.992 
t  19477 5351.85 12471.3 7932.86 

MHT based 

method [15] 

e  9.852 5.321 5.538 6.782 
t  2168.64 990.566 1930.35 1388.43 
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Fig. 11. Comparison of average error and processing time for whole image sequences. 

 

 
(a) Result of images #69 and #70 from OSU-2  

 
(b) Result of images #98 and #99 from OSU-2  

 
(c) Result of images #38 and #39 from Table Tennis  

Fig. 12. Results of our method, the RANSAC based method, and the MHT based method (from left to 

right) in critical situtation. The images shown in the first column represent two successive images. 

 

Table 5. Robustness in critical situations: featureless background and motion blur 

 Proposed 

method 

RANSAC 

[24] 

MHT based 

method [15] 

Average error in case critical situations excluded 5.107 8.995 6.416 
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Average error in case critical situations included 5.361 10.221 6.873 

Error increase 0.254 1.226 0.457 

6. Conclusions 

In this paper we describe a novel GHT method for background motion compensation. The 

proposed method contains two major components: 1) the HT that is used to initialize the GA 

population, and 2) the GA that is then applied to find an optimal solution. In HT, the possible 

matches obtained by matching binary vertical and horizontal histograms accumulate into the 

Hough space. Every time the peak of the Hough space reaches a threshold, the corresponding 

parameters at the cell of that peak are utilized as a new individual of the GA population. Based 

on appropriate estimates, the GHT outperforms both conventional GA and other non-GA 

methods. Furthermore, in GA, FP is used to interpolate the new fitness of the current 

generation based on the fitness of the past generation. FP reduces the computational 

complexity of fitness calculation. FE and FP are alternately utilized to increase speed and to 

maintain accuracy of the GHT method. By experimentally comparing the results of the 

proposed method with those of other GA models and other non-GA methods, we found that 

the proposed approach yielded satisfactory estimates of background motion. 
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