• Title/Summary/Keyword: Aerospace Engineering

Search Result 7,409, Processing Time 0.034 seconds

Sliding Mode Control for an Intelligent Landing Gear Equipped with Magnetorheological Damper

  • Viet, Luong Quoc;Lee, Hyo-sang;Jang, Dae-sung;Hwang, Jai-hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.20-27
    • /
    • 2020
  • Several uncertainties in the landing environment of an aircraft are not considered, such as the falling speed, ambient temperature, and sensor noise. These uncertainties negatively affect the performance of the controller applied to a landing gear. The sliding mode control (SMC) method, which maintains the optimal performance of a controller under uncertainties, is used in this study. The landing gear is equipped with a magnetorheological damper that changes the yield shear stress according to the applied magnetic field. The applied controller employs a hybrid control combining Skyhook control and force control. The SMC maintains the optimal performance of the hybrid control by minimizing the tracking error of the damper force, even in various landing environments where parameter uncertainties are applied. The effect of SMC is verified through co-simulation results from Simscape and Simulink.

Design and Test of a Deployment Mechanism for the Composite Reflector Antenna (복합재료 반사판 안테나의 전개 메커니즘 설계 및 시험)

  • Chae, Seungho;Oh, Young-Eun;Lee, Soo-Yong;Roh, Jin-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.58-65
    • /
    • 2018
  • The dynamic characteristics of the deployable composite parabolic reflector with several panels were numerically and experimentally investigated. The deployment mechanism is designed to efficiently fit in a small volume. The parameters guiding the deployment are determined by considering; the number of panels, folding/twisting angles, and the driving forces of actuating devices. The panels are fabricated using carbon fiber reinforced plastics (CFRPs). The zero-gravity simulator is manufactured for the unfolding test. The deployment behaviors of the reflector are finally observed.

Experimental Study on the Film Cooling Effectiveness on a Flat Plate with Anti-Vortex Holes

  • Park, Soon Sang;Park, Jung Shin;Kwak, Jae Su
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, the effects of the anti-vortex hole angle and blowing ratio on the flat plate film cooling effectiveness were experimentally investigated. For the film cooling effectiveness measurement, pressure sensitive paint technique was applied. The experiments were conducted for cylindrical and anti-vortex film cooling holes, and three blowing ratios of 0.25, 0.5, and 1.0 were tested. Two anti-vortex hole angles of 0 and 15 degree with respect to the flow direction were considered. For the cylindrical hole case, the film cooling effectiveness decreased as the blowing ratio increased because of the coolant lift-off. For the angle anti-vortex hole cases, however, higher blowing ratio resulted in higher film cooling effectiveness due to the reduced actual blowing ratio and diminished kidney vortex. For all blowing ratio, the angled anti-vortex hole case showed the highest film cooling effectiveness.

Computation of Unsteady Aerodynamic Forces in the Time Domain for GVT-based Ground Flutter Test (지상 플러터 실험을 위한 시간 영역에서의 비정상 공기력 계산)

  • Lee, Juyeon;Kim, Jonghwan;Bae, Jaesung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • Flutter wind-tunnel test is an expensive and complicated process. Also, the test model may has discrepancy in the structural characteristics when compared to those of the real model. "Dry Wind-Tunnel" (DWT) is an innovative testing system which consists of the ground vibration test (GVT) hardware system and software which computationally can be operated and feedback in real-time to yield rapidly the unsteady aerodynamic forces. In this paper, we study on the aerodynamic forces of DWT system to feedback in time domain. The aerodynamic forces in the reduced-frequency domain are approximated by Minimum-state approximation. And we present a state-space equation of the aerodynamic forces. With the two simulation model, we compare the results of the flutter analysis.

Mixing Characteristics of Kerosene-Lox in a Swirl Injector at 100 bar

  • Heo, Junyoung;Kang, Jeongseok;Sung, Hong-Gye
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.30-38
    • /
    • 2016
  • The The turbulent mixing characteristics of Kerosene-LOx in a coaxial swirl injector 100 bar have been numerically investigated. Turbulent model is based on large eddy simulation with real-fluid transport and thermodynamics. The effects of equation of state (EOS), chamber pressure are evaluated in a point of the mixing efficiency and pressure fluctuations. The dominant frequency is same as the hairpin vortex shedding frequency generated by film wave at the LOx post.

Efficient Path Planning for Long Term Solar UAV Flight (태양광 에너지 무인항공기의 장기체공을 위한 경로 탐색)

  • Ryu, Hanseok;Byun, Heejae;Park, Sanghyuk
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.32-38
    • /
    • 2014
  • Sufficient energy charging during a day is essential for a solar-powered long-endurance aircraft. Variations of flight path that is superior to a basic circle path are sought in this study for more efficient charging. Flight path associated with roll and pitch attitudes are investigated. It seems that the pitch angle can play more important role than the roll angle for the solar charging efficiency. Thus, more energy charging is observed when the entire flight path is tilted toward the direction of the sun.

Review of Test Methods for Fabric Skin Properties of Fabric-Covered Wind Turbine Blade (풍력블레이드의 패브릭 스킨재료 물성 시험방법에 대한 고찰)

  • Cho, Hyeongsun;Bae, Jae-Sung;Lee, Sooyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 2015
  • Wind Turbines are becoming larger in size in order to improve economic efficiency through cost reduction, such as the construction of growth and power infrastructure of energy efficiency. It have requested the large-scale blade design and production. In the present study the new manufacture technique called a fabric-blade structure using spar, rib, and fabric membrane skin is introduced. The architectural membrane test method has been studied to be applied to the skin of the blade. The density and one-axis tensile tests of the architectural membrane materials are conducted to confirm the physical properties which are necessary to the structural designs and analyses of the wind turbine blade.

Study of storyboard making system (드론 기반의 스토리보드 제작 시스템 연구)

  • Lee, Dong-Woo;Moon, Seong-Yeop;Kim, Jin-Sil;Kim, Ip-Su;Erdene, Zorigbold Munkh;Han, Se-Jin;Na, Jong-Hwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.728-730
    • /
    • 2016
  • 드론 기반의 항공촬영 기법을 영화제작에 적용토록 하기 위해 드론 기반의 스토리보드 제작 시스템을 제안한다. 제작 시스템은 항공촬영 수행 전, 비행 시뮬레이션을 수행하여, 다양한 스토리보드 세트를 수집한다. 감독은 스토리보드 세트 중 가장 적합한 스토리보드를 선택한다. 선택된 스토리보드에는 촬영 영상정보와 함께, 드론 제어정보들이 포함된다. 드론의 제어정보를 실제 촬영에서 사용하여, 정밀한 항공촬영을 지원할 수 있다.