• Title/Summary/Keyword: Aerospace Adhesive

Search Result 56, Processing Time 0.024 seconds

On-orbit Thermal Characteristic for Multilayered High Damping Yoke Structure Based on Superelastic Shape Memory Alloy for Passive Vibration Control of Solar Panels (태양전지판의 수동형 제진을 위한 초탄성 형상기억합금 기반 적층형 고댐핑 요크 구조의 궤도상 열적 특성 분석)

  • Min-Young Son;Jae-Hyeon Park;Bong-Geon Chae;Sung-Woo Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In a previous study, a structure of a superplastic yoke consisting of a thin FR4 layer laminated with viscoelastic tape on both sides of a shape memory alloy (SMA) was proposed to reduce residual vibration generated by a deployable solar panel during high motion of a satellite. Damping properties of viscoelastic tapes will change with temperature, which can directly affect vibration reduction performance of the yoke. To check damping performance of the yoke at different temperatures, free damping tests were performed under various temperature conditions to identify the temperature range where the damping performance was maximized. Based on above temperature test results, this paper predicts temperature of the yoke through orbital thermal analysis so that the yoke can have effective damping performance even if it is exposed to an orbital thermal environment. In addition, the thermal design method was described so that the yoke could have optimal vibration reduction performance.

The Flexible Characteristic of Reversible and Robust Nanohair Fastener

  • Park, Seung-Ho;Yoon, Young-Seok;Lee, Dong-Woo;Lee, Dong-Ik;You, Kyoung-Hwan;Pang, Chang-Hyun;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.432-432
    • /
    • 2011
  • Dry adhesion caused by Nanoscale contact comes up to important scientific issue. Herein, we introduce bendable nanohairy locking fastener system with high shear strength and mechanically flexible backing. The polymeric patches like velcro are composed of an array of straight nanohairs with 100 nm diameter and $1{\mu}m$ height. To fabricate high aspect vertical nanohairs, we used UV molding method with appropriately flexible and rigid polyurethane acrylate material on PET substrate. Two identical nanohairy patches are easily merged and locked each other induced by van der Waals force. Because nanohairs can be arrayed with high density ${\sim}4{\times}10^8/cm^2$, we can obtain high shear adhesion force on flat surface (~22 N/$cm^2$). Furthermore, we can obtian nanohairy locking system with maximum shear adhesion ~48 N/$cm^2$ of curved surface due to flexibility of PET substrate. We confirm the tendency that shear adhesion force increases, as radius of curvature increases.

  • PDF

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment (적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증)

  • Jeon, Young-Hyeon;Ko, Dai-Ho;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.575-582
    • /
    • 2018
  • The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.

Failure Strength of the Composite Mechanical Joint according to the Stacking Angle (적층각 변화에 따른 복합재료 기계적 체결부의 파손강도)

  • Jo, Dae-Hyeon;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • Generally, joints are the weakest part in the composite structures. Composite joints can be classified into adhesive joints and mechanical joints, and mechanical joints are mainly used in areas less sensitive to environmental conditions. In this paper, the failure loads of composite mechanical joints with five different stacking angles are tested and predicted. Finite element analysis of mechanical joints were performed and failure loads were predicted by the FAI(Failure Area Index) method using Tsai-Wu and Yamada-Sun failure criteria, and the predicted failure loads were compared with experimental results. From the experiment and analysis, the failure loads of the mechanical joints were decreased as the ratio of 0 degree layer was low and they could be predicted within 13.03% using the FAI method and Yamada-Sun failure criteria.

Lifetime Enhancement of Aerospace Components Using a Dual Nitrogen Plasma Immersion ion Implantation Process

  • Honghui Tong;Qinchuan Chen;Shen, Li-Lu;Yanfeng Huo;Ke Wang;Tanmin Feng;Lilan Mu;Jun Zha;Paul K. Chu
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.62-66
    • /
    • 2002
  • Hydraulic pumps are used to control the landing wheels of aircrafts, and their proper operation is vital to plane safety It is well hewn that adhesive wear failure is a major cause of pump failure. A dual nitrogen plasma immersion ion implantation process calling for the implantation of nitrogen at two different energies and doses has been developed to enhance the surface properties of the disks in the pumps. The procedures meet the strict temperature requirement of <200$^{\circ}C$, and after the treatment, the working lifetime of the pumps increases by more than a factor of two. This experimental protocol has been adopted by the hydraulic pump factory as a standard manufacturing procedure.

  • PDF

HILS of the Braking System of a High Speed Train (고속전철 제동시스템의 HILS)

  • Hwang, Won-Ju;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.432-437
    • /
    • 2001
  • Korea High Speed Train(KHST) is supposed to run up 350km/h, in which the braking system has a crucial role for the safety of the train. In the design st데 of the braking system, its very hard to ac-quire information data for design guidelines. A HILS(Hardware-In-the-Loop Simulation) system can be used to get design data which could simulate the braking system of the real train in real-time. In this paper, cars are modelled including car dynamics, brake blending algorithms, pneumatic actuator dynamics, the models of each braking devices, adhesive coefficients, and soon. Real-time braking time, distance, and other design parameters are simulated using a DSP board and C language which shows the validity of the proposed method.

  • PDF

Joining of Thermoplastics by the Ultrasonic Welding (초음파용접에 의한 열가소성 수지의 접합)

  • Park, Joon-Boo;Lee, Chul-Ku
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.118-125
    • /
    • 1992
  • Joining of thermoplastics is an area of growing importance in the automotive, aerospace, electronics medical and other domestic appliance industries. While adhesive Bonding or mechanical fastening could be used to join thermoplastics, welding is very effective because of its speed and low cost. This study investgated the ultrasonic joining of thermoplastics. Four kinds of thermoplastics such as Acrylonitrile Butadiene Styrene, Polystyrene, Polyethylene and Polypropylene were used, ultilizing all possible joining combinations. In each combination of thermoplastics, the weldability of the joint was evaluated as a function of weld time, amplitude of vibration and pressure. It was generally found that joining of amorphous thermoplastics with semicrystalline thermopastics resulted in poor joints due to its different crystalline structure. Joining of the amorphous thermoplastics together and joining of the semicrystalline thermoplastics together produced the best joints owing to its same crystalline structure.

  • PDF

Analysis of the dynamical behavior of piezoceramic actuators using piezoelectric isogeometric finite elements

  • Willberg, Christian
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.37-60
    • /
    • 2016
  • In this paper an electromechanically coupled isogeometric finite element is utilized to analyse Lamb wave excitation with piezoceramic actuators. An effective actuator design reduces the energy needed for Lamb wave excitation, which is beneficial if a structural health monitoring system should be applied for a structure. For a better understanding of the actuator behavior the piezoeceramics are studied both free and bonded at a structure. The numerical part of the analysis is performed utilizing isogeometric finite elements. To obtain the optimal performance for the numerical analysis the effect of k-refinement of the isogeometric element with respect to the convergence is studied and discussed. The optimal numerical setup with the best convergence rate is proposed and is validated with free piezoeceramic actuators. The validated model is then utilized to study the impact of actuator shape and adhesive bondline effect to the wave amplitude. The study shows that simplified analytical equations do not predict the optimal excitation frequencies for all piezoceramic designs accurately.

Tensile Strength of Composite Laminate Repaired Using Heat-blanket and a Novel Pressurization System (히트블랑켓과 새롭게 개발된 가압장치를 이용해 수리한 복합재 적층판의 인장강도 연구)

  • Chae, Song-Su;Lee, Gwang-Eun;Ahn, Hyonsu;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • In the case of a conventional composite patch repair using a heat blanket, the adhesive is pressurized using only a vacuum bag. In this study, however, a pressurization system has been developed to apply additional air pressure on the vacuum bag. In order to verify the performance of the developed system, the composite laminates were repaired with scarf patches and then tested under tensile load to be compared with the strength of the defect-free laminate. Tensile tests were also conducted on specimens with the same configuration but bonded in an autoclave. As a result of the test, the tensile strengths of the specimens repaired using the heat blanket with vacuum only without external pressure, the specimens repaired with additional pressure by the developed system, and the specimens repaired with the same external pressure in an autoclave, showed the strength recovery ratios of 74.9, 81.0, and 78.2%, respectively. The results of the tensile test after moisture saturation and the dried fatigue test also showed that the strength recovery ratios of the specimens repaired under the external pressure of 1 atm using the developed system are slightly higher than that of specimens bonded in autoclave.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.