References
- Adam, C., Bouabdallah, S., Zarroug, M. and Maitournam, H. (2015), "Stable time step estimates for NURBS-based explicit dynamics", Comput. Meth. Appl. Mech. Eng., 295(581-605), doi: http://dx.doi.org/10.1016/j.cma.2015.03.017.
- Ahmad, Z.A.B. and Gabbert, U. (2012), "Simulation of Lamb wave reflections at plate edges using the semianalytical finite element method", Ultrasonics, 52(7), 815-820. https://doi.org/10.1016/j.ultras.2012.05.008
- Ahmad, Z.A.B. (2011), "Numerical Simulations of Lamb waves in plates using a semi-analytical finite element method", Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Fortschritt-Berichte VDI Reihe 20, Nr. 437, Dusseldorf: VDI Verlag, ISBN:978-3-18-343720-7.
- Alleyne, D. and Cawley, P. (1991), "A two-dimensional Fourier transform method for the measurement of propagating multimode signals", J. Acoust. Soc. Am., 89(3), 1159-1168. https://doi.org/10.1121/1.400530
- Bazilevs, Y. (2006), "Isogeometric analysis of turbulence and fluid-structure interaction", Ph.D. thesis, The University of Texas at Austin.
- Boller, C., Chang, F.-K. and Fijino, Y. (2009), Encyclopedia of Structural Health Monitoring, John Wiley & Sons, ISBN-10: 0470058226.
- Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y. (2009), Isogeometric analysis: Toward integration of CAD and FEA, John Wiley & Sons, ISBN-10: 0470748737.
- Crawley, E.F. and de Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25(10), 1373-1385. https://doi.org/10.2514/3.9792
- de Boor, C. (1972), "On calculating with B-splines", J. Approx. Theory, 6(1), 50-62. https://doi.org/10.1016/0021-9045(72)90080-9
- Duczek, S. (2014), "Higher order finite elements and the fictitious domain concept for wave propagation analysis", Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Fortschritt-Berichte VDI Reihe 20, Nr. 458, Dusseldorf: VDI Verlag, ISBN: 978-3-18-345820-2.
- Evans, J.A., Bazilevs, Y., Babuska, I. and Hughes, T.J.R. (2009), "n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method", Comput. Meth. Appl. Mech. Eng., 198(21), 1726-1741. https://doi.org/10.1016/j.cma.2009.01.021
- Giurgiutiu, V. (2008), Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Academic Press (Elsevier), ISBN-13: 978-0-12-088760-6.
- Ha, S. (2009), "Modeling Lamb wave propagation induced by adhesively bonded PZTs on thin plates", Ph.D. thesis, Stanford University, California, USA.
- Ha, S. (2010), "Adhesive interface layer effects in PZT-induced Lamb wave propagation", Smart Mater. Struct., 19(2), 025006. https://doi.org/10.1088/0964-1726/19/2/025006
- Huang, C.-H., Lin, Y.-C. and Ma, C.-C. (2004), "Theoretical analysis and experimental measurement of resonant vibration of piezoceramic circular plates", IEEE Trans. Ultrasonic., Ferroelect., Freq. Control, 51(1), 12-24. https://doi.org/10.1109/TUFFC.2004.1268463
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Ikeda, T. (1996), Fundamentals of piezoelectricity, Oxford science publications, Oxford University Press, ISBN 9780198564607.
- Kessler, S., Spearing, M. and Atallab, M. (2002), "In-situ damage detection of composites structures using Lamb wave methods", In Proceedings of the First European Workshop on Structural Health Monitoring, 10-12 July 2002 Paris France.
- Marinkovic, D., Koppe, H. and Gabbert, U. (2006), "Numerically efficient finite element formulation for modeling active composite laminates", Mech. Adv. Mater. Struct., 13(5), 379-392. https://doi.org/10.1080/15376490600777624
- Mohamed, R., Demer, D.L. and Masson, P. (2011), "A parametric study of piezoelectric thickness effect on the generation of fundamental Lamb modes", Hlth. Monit. Struct. Biol. Syst., Proceedings of SPIE Vol. 7984.
- Mook, G., Pohl, J. and Michel, F. (2003), "Non-destructive characterization of smart CFRP structures", Smart Mater. Struct., 12(6), 997-1004. https://doi.org/10.1088/0964-1726/12/6/019
- PI Ceramic GmbH, Lederhose - GERMANY (2011), http://www.piceramic.com/index.php.
- Piegl, L. and Tiller, W. (1995), The NURBS Book, Springer, ISBN: 3-540-55069-0.
- Pohl, J., Willberg, C., Gabbert, U. and Mook, G. (2012), "Theoretical analysis and experimental determination of the dynamic behaviour of piezoceramic actuators for SHM", Exp. Mech., 51(4), 429-438.
- Samal, M.K., Seshu, P., Parashar, S., von Wagner, U., Hagedorn, P., Dutta, B.K. and Kushwaha, H.S. (2005), "A finite element model for nonlinear behaviour of piezoceramics under weak electric fields", Finit. Element. Anal. Des., 41(15), 1464-1480. https://doi.org/10.1016/j.finel.2005.05.002
- Schmicker, D., Duczek, S., Liefold, S. and Gabbert, U. (2014), "Wave propagation analysis using high-order finite element methods: Spurious oscillations excited by internal element eigenfrequencies", Technische Mechanik, 34(2), 51-71.
- Sirohi, J. and Chopra, I. (2000), "Fundamental understanding of piezoelectric strain sensors", J. Intellig. Mater. Syst. Struct., 11(4), 246-257. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
- Sohn, H. and Lee, S.J. (2010), "Lamb wave tuning curve calibration for surface-bonded piezoelectric Transducers", Smart Mater. Struct., 19(1), 015007. https://doi.org/10.1088/0964-1726/19/1/015007
- Su, Z. and Ye, L. (2009), Identification of Damage Using Lamb Waves: From Fundamentals to Applications, Springer, ISBN: 978-1-84882-783-7.
- Su, Z., Ye, L. and Lu, Y. (2006), "Guided Lamb waves for identification of damage in composite structures: A review", J. Sound Vib., 295(3), 753-780. https://doi.org/10.1016/j.jsv.2006.01.020
- Willberg, C. (2013), "Development of a new isogeometric finite element and its application for Lamb wave based structural health", Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Fortschritt-Berichte VDI Reihe 20, Nr. 446, Dusseldorf: VDI Verlag, ISBN: 978-3-18-344620-9.
- Willberg, C. and Gabbert, U. (2012), "Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications", Acta Mechanica, 223(8), 1837-1850. https://doi.org/10.1007/s00707-012-0644-x
- Willberg, C., Vivar-Perez, J.M., Ahmad, Z. and Gabbert, U. (2009), "Simulation of piezoelectric induced Lamb wave motion in plates", In Proceedings of the 7th International Workshop on Structural Health Monitoring 2009: From System Integration to Autonomous Systems, 2299-2307.
- Willberg, C., Duczek, S., Vivar-Perez, J.M., Schmicker, D. and Gabbert, U. (2012a), "Comparison of different higher order finite element schemes for the simulation of Lamb waves", Comput. Meth. Appl. Mech. Eng., 241, 246-261.
- Willberg, C., Koch, S., Mook, G., Gabbert, U. and Pohl, J. (2012b), "Continuous mode conversion of Lamb waves in CFRP plates", Smart Mater. Struct., 21(7), 1-9.
- Willberg, C., Duczek, S. and Gabbert, U. (2013), "Increasing the scanning range of Lamb wave based SHM systems by optimizing the actuator sensor design", CEAS Aeronaut. J., 4(1), 87-98. https://doi.org/10.1007/s13272-012-0052-x
- Willberg, C., Duczek, S., Vivar-Perez, J.M. and Ahmad, Z.A.B. (2015), "Simulation methods for guided wave-based structural health monitoring: A review", Appl. Mech. Rev., 67(1), 010803. https://doi.org/10.1115/1.4029539
- Zienkiewicz, O.C. and Taylor, R. (2000), The Finite Element Method, Volume 1: Basis, Butterworth- Heinemann, ISBN: 0 7506 5049 4.
Cited by
- Numerical Solution of a Wave Propagation Problem Along Plate Structures Based on the Isogeometric Approach 2017, https://doi.org/10.1142/S0218396X17500308
- Numerical Solution of a Wave Propagation Problem Along Plate Structures Based on the Isogeometric Approach vol.26, pp.1, 2016, https://doi.org/10.1142/s259172851750030x
- Two rectangular elements based on analytical functions vol.5, pp.2, 2016, https://doi.org/10.12989/acd.2020.5.2.147