• 제목/요약/키워드: Aerosol surface area

검색결과 60건 처리시간 0.027초

Operational Atmospheric Correction Method over Land Surfaces for GOCI Images

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.127-139
    • /
    • 2018
  • The GOCI atmospheric correction overland surfaces is essential for the time-series analysis of terrestrial environments with the very high temporal resolution. We develop an operational GOCI atmospheric correction method over land surfaces, which is rather different from the one developed for ocean surface. The GOCI atmospheric correction method basically reduces gases absorption and Rayleigh and aerosol scatterings and to derive surface reflectance from at-sensor radiance. We use the 6S radiative transfer model that requires several input parameters to calculate surface reflectance. In the sensitivity analysis, aerosol optical thickness was the most influential element among other input parameters including atmospheric model, terrain elevation, and aerosol type. To account for the highly variable nature of aerosol within the GOCI target area in northeast Asia, we generate the spatio-temporal aerosol maps using AERONET data for the aerosol correction. For a fast processing, the GOCI atmospheric correction method uses the pre-calculated look up table that directly converts at-sensor radiance to surface reflectance. The atmospheric correction method was validated by comparing with in-situ spectral measurements and MODIS reflectance products. The GOCI surface reflectance showed very similar magnitude and temporal patterns with the in-situ measurements and the MODIS reflectance. The GOCI surface reflectance was slightly higher than the in-situ measurement and MODIS reflectance by 0.01 to 0.06, which might be due to the different viewing angles. Anisotropic effect in the GOCI hourly reflectance needs to be further normalized during the following cloud-free compositing.

활성화 및 에어로졸 공정에 의한 다공성 그래핀 볼 제조 및 슈퍼커패시터 응용 (Synthesis of Porous Graphene Balls by the Activation and Aerosol Process for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제15권4호
    • /
    • pp.183-190
    • /
    • 2019
  • Here, we introduce porous graphene balls (PGB) showing superior electrochemical properties as supercapacitor electrode materials. PGB was fabricated via activation of graphene oxides (GO) by H2O2 and aerosol spray drying in series. Effect of activation on the morphology, specific surface area, pore volume, and electrochemical properties were investigated. As-prepared PGB showed spherical morphology containing pores, which lead to the effective prevention of restacking in graphene sheets. It also exhibited a large surface area, unique porous structures, and high electrical conductivity. The electrochemical properties of the PGB as electrode materials of supercapacitor are investigated by using aqueous KOH under symmetric two-electrode system. The highest specific capacitance of PGB was 279 F/g at 0.1 A/g. In addition, the high rate capability (93.8% retention) and long-term cycling stability (92.2%) of the PGB were found due to the facilitated ion mobility between the porous graphene layers.

강설시 도심지역 에어러솔의 물리.화학적 특성 (The Physio-Chemical Characteristics of Aerosol in Urban Area During Snowfall)

  • 김민수;이동인;유철환
    • 한국환경과학회지
    • /
    • 제10권3호
    • /
    • pp.201-208
    • /
    • 2001
  • To investigate the physio-chemical components and properties of aerosol particles in urban area sampling of aerosol particles was carried out in the campus of Hokkaido University, Sapporo, Japan, during snowfall. Aerosol particles were collected on millipore filter papers using a low volume air sampler. Their shapes, sizes and chemical components were analyzed by a SEM(Scanning Electron Microscope) and an EDX(Energy Dispersive X-ray). As a results, ice crystals of dendrite and column types were predominantly shown at mature and developing stage of snowfall intensity. The denerite and sector plate types of ice crystals were mainly originated from the sea but column types were come from soil. Scavenging effect by snowfall was greatly also shown at dendrite type ice crystals that embryo was fully developd. Al, Si elements were shown at high frequencies as compared with others. Na, Cl components were especially shown at high frequencies under the sea-breeze wind during snowfall. Anthropogenic aerosol particles had shown with irregular shapes and sizes, relatively. Mainly 3-7$\mu$m aerosol particles were abundant and coarse particles also could be seen during snowfall. Ca, Zn, Fe components mainly caused by spike tires from vehicles in winter season were dominant before snowfall, however the element S mainly caused by human activity was rich after snowfall. The pH values of snow in Sapporo city were higher than those at coastal area. The concentration of chemical components in aerosol particles was also affected by surface winds. Aerosol particles in urban area, Sapporo were mainly affected by human activities like vehicles and combustion with wind system. And their types were related with snowfall intensity.

  • PDF

에어로졸 자기조립에 의한 실리카 나노분말의 표면개질 (Surface Modification Silica Nanoparticles by Aerosol Self Assembly)

  • 길대섭;장희동;장한권;조국;김선경;오경준;최진훈
    • 한국재료학회지
    • /
    • 제20권2호
    • /
    • pp.78-81
    • /
    • 2010
  • Surface modification of silica nanoparticles was investigated using an aerosol self assembly. Stearic acid was used as surface treating agent. A two-fluid jet nozzle was employed to generate an aerosol of the colloidal suspension, which contained 20 nm of silica nanoparticles, surface modifier, and ethyl alcohol. Powder properties such as morphology, specific surface area and pore size distribution were analyzed by SEM, BET and BJH methods, respectively. Surface properties of the silica power were analyzed by FT-IR. The OH bond of the $SiO_2$ surface was converted to a C-H bond. It was revealed that the hydrophilic surface changed to a hydrophobic one due to the aerosol self assembly. Morphology of the surface treated powder was nanostructured with lots of pores having an average diameter of around $2\;{\mu}m$. Depending on the stearic acid concentration (0.25 to 1.0 wt%), the pore size distribution of the particles and the degree of hydrophobicity ranged from 1.5 nm to 180 nm and 29.6% to 50.2%, respectively.

일본 정지궤도 기상위성 Himawari-8을 이용한 에어로졸 광학정보 산출 및 검증 (Retrieval and Validation of Aerosol Optical Properties Using Japanese Next Generation Meteorological Satellite, Himawari-8)

  • 임현광;최명제;김미진;김준
    • 대한원격탐사학회지
    • /
    • 제32권6호
    • /
    • pp.681-691
    • /
    • 2016
  • 자외선, 가시광, 적외선 파장대역의 채널을 갖는 위성 관측에 기반한 다양한 에어로졸 정보산출 알고리즘에 대해 많은 연구가 이루어져 왔다. 본 연구에서는 최근 발사된 일본 기상위성 히마와리 8의 가시광-적외선 채널정보를 이용하여, 어두운 지표 위에서 에어로졸 광학정보를 산출하였다. 가시영역을 이용한 에어로졸 광학정보 산출은 지표신호의 정확한 제거가 매우 중요한데, 이는 최소반사도법을 사용하여 산출하였다. 본 알고리즘은 어두운 지표에서 에어로졸 광학정보를 산출을 하기에 구름, 사막 등과 같은 밝은 지표 위에서는 산출하지 않는다. AHI는 가시광채널 외에도, 다양한 적외 채널을 갖고 있어 공간 비균질성, 밝기온도차이(Brightness Temperature Difference, BTD) 등을 이용하여 구름제거가 가능하다. 밝기온도(Brightness Temperature, BT)를 이용해 하층운, 상층운 제거에 유리한 채널을 사용하여 구름을 제거하게 된다. Aerosol Optical Depth (AOD) 산출 결과로는 상관계수가 0.7, 기대오차(Expected Error, EE) 안에 있는 비율이 49%를 나타내고 있으며, 낮은 AOD에서도 정확한 산출이 이뤄지고 있음을 보이고 있다. 다만 베이징 허베이 지역에서는 에어로졸 광학두께를 과소모의하는 경향이 있는데, 이는 최소반사도법을 이용한 지표정보 산출이 실제 지표반사도보다 높게 지표면 정보를 추정하게 되기 때문으로 추정된다.

티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석 (Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium)

  • 한정식;정종윤
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

A Study on Three Factors Influencing Uptake Rates of Nitric Acid onto Dust Particles

  • Song, Chul-Han;Kim, Chung-Man
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권2호
    • /
    • pp.97-104
    • /
    • 2011
  • Recent studies have indicated that the observed nitric acid ($HNO_3$) uptake rates ($R_{HNO_3}$) onto dust particles are much slower than $R_{HNO_3}$ used in the previous modeling studies. Three factors that possibly affect $R_{HNO_3}$ onto dust particles are discussed in this study: (1) the magnitude of reaction probability of $HNO_3$ (${\gamma}_{HNO_3}$), (2) aerosol surface areas, and (3) gas-phase $HNO_3$ mixing ratio. Through the discussion presented here, it is shown that the use of accurate ${\gamma}_{HNO_3}$ is of primary importance. We suggest that the use of ${\gamma}_{HNO_3}$ values between $\sim10^{-3}$ and $\sim10^{-5}$ produces more realistic results than the use of ${\gamma}_{HNO_3}$ values between $\sim10^{-1}$ and $\sim10^{-2}$ does, more accurately modeling the nitrate formation characteristics on/in dust particles. We also discuss two different types of aerosol surface area, active and geometric, since the use of different aerosol surface areas often leads to an erroneous result in $R_{HNO_3}$. In addition, the levels of the gas-phase $HNO_3$ are investigated with the example cases of TRACE-P DC-8 flights in East Asia. The $HNO_3$ levels were found to be relatively high, indicating that they can not limit nitrate formation in dust particles.

MODIS 인공위성 관측 자료를 이용한 대기질 예측 응용 (Application of MODIS Satellite Observation Data for Air Quality Forecast)

  • 이권호;이동하;김영준
    • 한국대기환경학회지
    • /
    • 제22권6호
    • /
    • pp.851-862
    • /
    • 2006
  • Satellites have been valuable tool for global/regional scale atmospheric environment monitoring as well as emission source detection. In this study, we present the results of application of satellite remote sensing data for air quality forecast in Seoul metropolitan area. AOT (Aerosol Optical Thickness) data from TERRA/MODIS (Moderate Resolution Imaging Spectre-radiometer) satellite were compared to ground based $PM_{10}$ mass concentrations, and used to estimate the possibility of the aerosol forecasting in Seoul metropolitan area. Although correlation coefficient (${\sim}0.37$) between MODIS AOT products and surface $PM_{10}$ concentration data was relatively low, there was good correlation between MODIS AOT and surface PM concentration under certain atmospheric conditions, which supports the feasibility of using the high-resolution MODIS AOT for air quality forecasting. The MODIS AOT data with trajectory forecasts also can provide information on aerosol concentration trend. The success rate of the 24 hour aerosol concentration trend forecast result was about 75% in this study. Finally, application of satellite remote sensing data with ground-based air quality observations could provide promising results for air quality monitoring and more exact trend forecast methodology by high resolution satellite data and verification with long term measurement dataset.

Aerosol Losses in a 100L $Tedlar^{(R)}$ Bag

  • Oh, Sewon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제20권E2호
    • /
    • pp.61-68
    • /
    • 2004
  • Aerosol losses in a 100L Tedlar$^{(R)}$ bag were investigated for the aerosols with number median diameter of 0.05 ${\mu}{\textrm}{m}$ and number concentration of 6.4 ${\times}$ 10$^4$ cm$^{-3}$ . Over a 1 hr period, loss of particles in the bag is apparent, and the volume decrease with time is significant. The number concentration, surface area, and volume concentration of the aerosols decreased to 34, 50, and 52% of the initial value in 30 min, respectively. This indicates that deposition to the walls was the main loss process for aerosols in the Tedlar$^{(R)}$ bag. Theoretical calculations showed that coagulations and deposition by diffusion and gravitational sedimentation would not change aerosol characteristics significantly, and the electrical force was the dominant loss process for particles in the Tedlar$^{(R)}$ bag over a 1 hr period.eriod.

남서해안지역 강설시 바람장 변화에 따른 에어로솔 수 농도 변동 (The Fluctuation of Aerosol Number Concentration by Wind Field Variation during Snowfall at the Southwestern Coastal Area)

  • 이동인;강미영;서길종;유철환;박성화;김부경;박남식
    • 한국환경과학회지
    • /
    • 제17권6호
    • /
    • pp.699-709
    • /
    • 2008
  • To understand the development mechanism of the aerosols in the surface boundary layer, the variation in the aerosol number concentration due to the divergence and convergence of the wind fields was investigated. The aerosol number concentration was measured in the size ranges of $0.3{\sim}10.0{\mu}m$ using a laser particle counter(LPC) from 0000 LST on 03 Feb. to 0600 LST on 07 Feb. 2004 at Mokpo in Korea during snowfall. The Velocity Azimuth Display(VAD) technique was used to retrieve the radar wind fields such as the horizontal wind field, divergence, and deformations including the vertical air velocity from a single Doppler radar. As a result, the distribution of the aerosol number concentration is apparently different for particles larger than $1{\mu}m$ during snowfall, and it has a tendency to increase at the beginning of the snowfall. The increase and decrease in the aerosol concentration due to the convergence and divergence of the wind fields corresponded to the particles with diameters greater than $1{\mu}m$. It is found that the fluctuations in the aerosol number concentration are well correlated with the development and dissipation of snowfall radar echoes due to the convergence and divergence of horizontal wind fields near the surface boundary layer in the inland during the snowfall.